möglich sobald bei der ZB eingereicht worden ist.
Automated analysis of whole brainvasculature using machine learning.
bioRxiv, accepted (2019)
Tissue clearing methods enable imaging of intactbiological specimens without sectioning. Howev-er, reliable and scalable analysis of such largeimaging data in 3D remains a challenge. Towardsthis goal, we developed a deep learning-basedframework to quantify and analyze the brain vas-culature, named Vessel Segmentation & AnalysisPipeline ( VesSAP). Our pipeline uses a fully con-volutional network with a transfer learning a p-proach for segmentation. We systematically ana-lyzed vascular features of the whole brains i n-cluding their length, bifurcation points and radiusat the micrometer scale by registering them to the Allen mouse brain atlas. We reported the firstevidence of secondary intracranial collateral vas-cularization in CD1-Elite mice and found reducedvascularization in the brainstem as compared to the cerebrum. VesSAP thus enables unbiasedand scalable quantifications for the angioarchi-tecture of the cleared intact mouse brain andyields new biological insights related to the vas-cular brain function.
Impact Factor
Scopus SNIP
0.000
0.000
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Sprache
englisch
Veröffentlichungsjahr
2019
HGF-Berichtsjahr
2019
Zeitschrift
bioRxiv
Verlag
Cold Spring Harbor Laboratory Press
Verlagsort
Cold Spring Harbor
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute for Tissue Engineering and Regenerative Medicine (ITERM)
Erfassungsdatum
2019-10-23