möglich sobald bei der ZB eingereicht worden ist.
Gene networks in cancer are biased by aneuploidies and sample impurities.
Biochim. Biophys. Acta-Gene Regul. Mech. 1863:194444 (2020)
Gene regulatory network inference is a standard technique for obtaining structured regulatory information from, for instance, gene expression measurements. Methods performing this task have been extensively evaluated on synthetic, and to a lesser extent real data sets. In contrast to these test evaluations, applications to gene expression data of human cancers are often limited by fewer samples and more potential regulatory links, and are biased by copy number aberrations as well as cell mixtures and sample impurities. Here, we take networks inferred from TCGA cohorts as an example to show that (1) transcription factor annotations are essential to obtain reliable networks, and (2) even for state of the art methods, we expect that between 20 and 80% of edges are caused by copy number changes and cell mixtures rather than transcription factor regulation.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Review
Schlagwörter
Gene Regulatory Networks ; Cancer ; Method Comparison ; Aneuploidy; Inference; Widespread
ISSN (print) / ISBN
1874-9399
e-ISSN
1876-4320
Quellenangaben
Band: 1863,
Heft: 6,
Artikelnummer: 194444
Verlag
Elsevier
Verlagsort
Radarweg 29, 1043 Nx Amsterdam, Netherlands
Nichtpatentliteratur
Publikationen
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Computational Biology (ICB)