PuSH - Publikationsserver des Helmholtz Zentrums München

Lucio, M. ; Willkommen, D. ; Schroeter, M.* ; Sigaroudi, A.* ; Schmitt-Kopplin, P. ; Michalke, B.

Integrative metabolomic and metallomic analysis in a case-control cohort with parkinson's disease.

Front. Aging Neurosci. 11:331 (2019)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Parkinson's disease (PD) is a neurodegenerative disease with a complex etiology. Several factors are known to contribute to the disease onset and its progression. However, the complete underlying mechanisms are still escaping our understanding. To evaluate possible correlations between metabolites and metallomic data, in this research, we combined a control study measured using two different platforms. For the different data sources, we applied a Block Sparse Partial Least Square Discriminant Analysis (Block-sPLS-DA) model that allows for proving their relation, which in turn uncovers alternative influencing factors that remain hidden otherwise. We found two groups of variables that trace a strong relationship between metallomic and metabolomic parameters for disease development. The results confirmed that the redox active metals iron (Fe) and copper (Cu) together with fatty acids are the major influencing factors for the PD. Additionally, the metabolic waste product p-cresol sulfate and the trace element nickel (Ni) showed up as potentially important factors in PD. In summary, the data integration of different types of measurements emphasized the results of both stand-alone measurements providing a new comprehensive set of information and interactions, on PD disease, between different variables sources.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.633
1.069
7
8
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Data Integration ; Metabolomics ; Metallomics ; Block-spls-da ; Parkinson's Disease; Cerebrospinal-fluid; Manganese Exposure; Neurodegeneration; Prevalence; Component; Metals; Copper; Serum; Iron
Sprache englisch
Veröffentlichungsjahr 2019
HGF-Berichtsjahr 2019
ISSN (print) / ISBN 1663-4365
e-ISSN 1663-4365
Quellenangaben Band: 11, Heft: , Seiten: , Artikelnummer: 331 Supplement: ,
Verlag Frontiers
Verlagsort Lausanne
Begutachtungsstatus Peer reviewed
POF Topic(s) 30202 - Environmental Health
Forschungsfeld(er) Environmental Sciences
PSP-Element(e) G-504800-001
G-504800-002
Scopus ID 85077285820
PubMed ID 31866853
Erfassungsdatum 2019-12-10