In contrast to the pervasive occurrence of denitrification in soils, anammox (anaerobic ammonium oxidation) is a spatially restricted process that depends on specific ecological conditions. To identify the factors that constrain the distribution and activity of anammox bacteria in terrestrial environments, we investigated four different soil types along a catena with opposing ecological gradients of nitrogen and water content, from an amended pasture to an ombrotrophic bog. Anammox was detected by polymerase chain reaction (PCR) and quantitative PCR (qPCR) only in the nitrophilic wet meadow and the minerotrophic fen, in soil sections remaining water-saturated for most of the year and whose interstitial water contained inorganic nitrogen. Contrastingly, aerobic ammonia oxidizing microorganisms were present in all examined samples and outnumbered anammox bacteria usually by at least one order of magnitude. 16S rRNA gene sequencing revealed a relatively high diversity of anammox bacteria with one Ca. Brocadia cluster. Three additional clusters could not be affiliated to known anammox genera, but have been previously detected in other soil systems. Soil incubations using N-15-labeled substrates revealed that anammox processes contributed about <2% to total N-2 formation, leaving nitrification and denitrification as the dominant N-removal mechanism in these soils that represent important buffer zones between agricultural land and ombrotrophic peat bogs.