PuSH - Publikationsserver des Helmholtz Zentrums München

Zhou, H.* ; Cai, R. ; Quan, T.* ; Liu, S.* ; Li, S.* ; Huang, Q.* ; Ertürk, A. ; Zeng, S.*

3D high resolution generative deep-learning network for fluorescence microscopy imaging.

Opt. Lett. 45, 1695-1698 (2020)
DOI PMC
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Microscopic fluorescence imaging serves as a basic tool in many research areas including biology, medicine, and chemistry. With the help of optical clearing, large volume imaging of a mouse brain and even a whole body has been enabled. However, constrained by the physical principles of optical imaging, volume imaging has to balance imaging resolution and speed. Here, we develop a new, to the best of our knowledge, 3D deep learning network based on a dual generative adversarial network (dual-GAN) framework for recovering high-resolution (HR) volume images from high speed acquired low-resolution (LR) volume images. The proposed method does not require a precise image registration process and meanwhile guarantees the predicted HR volume image faithful to its corresponding LR volume image. The results demonstrated that our method can recover 20 x /1.0-NAvolume images from coarsely registered 5 x /0.16-NA volume images collected by light-sheet microscopy. This method. would provide great potential in applications which require high resolution volume imaging.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
3.714
1.569
7
9
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Mice
Sprache englisch
Veröffentlichungsjahr 2020
HGF-Berichtsjahr 2020
ISSN (print) / ISBN 0146-9592
e-ISSN 1539-4794
Zeitschrift Optics Letters
Quellenangaben Band: 45, Heft: 7, Seiten: 1695-1698 Artikelnummer: , Supplement: ,
Verlag Optical Society of America (OSA)
Verlagsort 2010 Massachusetts Ave Nw, Washington, Dc 20036 Usa
Begutachtungsstatus Peer reviewed
Institut(e) Institute for Tissue Engineering and Regenerative Medicine (ITERM)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-505800-001
Scopus ID 85082791752
PubMed ID 32235976
Erfassungsdatum 2020-04-20