Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
		
    3D high resolution generative deep-learning network for fluorescence microscopy imaging.
        
        Opt. Lett. 45, 1695-1698 (2020)
    
    
    
				Microscopic fluorescence imaging serves as a basic tool in many research areas including biology, medicine, and chemistry. With the help of optical clearing, large volume imaging of a mouse brain and even a whole body has been enabled. However, constrained by the physical principles of optical imaging, volume imaging has to balance imaging resolution and speed. Here, we develop a new, to the best of our knowledge, 3D deep learning network based on a dual generative adversarial network (dual-GAN) framework for recovering high-resolution (HR) volume images from high speed acquired low-resolution (LR) volume images. The proposed method does not require a precise image registration process and meanwhile guarantees the predicted HR volume image faithful to its corresponding LR volume image. The results demonstrated that our method can recover 20 x /1.0-NAvolume images from coarsely registered 5 x /0.16-NA volume images collected by light-sheet microscopy. This method. would provide great potential in applications which require high resolution volume imaging.
			
			
		Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Times Cited
Scopus
Cited By
					
					Cited By
Altmetric
					
				3.714
					1.569
					7
					9
					
					
				Anmerkungen
				
					
						 
						
					
				
			
				
			
				Besondere Publikation
				
					
						 
					
				
			
			
			
				Auf Hompepage verbergern
				
					
						 
					
				
			
			
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
     
    
    
        Schlagwörter
        Mice
    
 
     
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2020
    
 
     
    
        HGF-Berichtsjahr
        2020
    
 
    
    
        ISSN (print) / ISBN
        0146-9592
    
 
    
        e-ISSN
        1539-4794
    
 
     
     
     
	     
	 
	 
    
        Zeitschrift
        Optics Letters
    
 
		
    
        Quellenangaben
        
	    Band: 45,  
	    Heft: 7,  
	    Seiten: 1695-1698 
	    
	    
	
    
 
  
         
        
            Verlag
            Optical Society of America (OSA)
        
 
        
            Verlagsort
            2010 Massachusetts Ave Nw, Washington, Dc 20036 Usa
        
 
	
         
         
         
         
         
	
         
         
         
    
         
         
         
         
         
         
         
    
        Begutachtungsstatus
        Peer reviewed
    
 
    
        Institut(e)
        Institute for Tissue Engineering and Regenerative Medicine (ITERM)
    
 
    
        POF Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Forschungsfeld(er)
        Enabling and Novel Technologies
    
 
    
        PSP-Element(e)
        G-505800-001
    
 
     
     	
    
    
        WOS ID
        WOS:000522794100026
    
    
        Scopus ID
        85082791752
    
    
        PubMed ID
        32235976
    
    
        Erfassungsdatum
        2020-04-20