PuSH - Publikationsserver des Helmholtz Zentrums München

Zhou, H.* ; Cai, R. ; Quan, T.* ; Liu, S.* ; Li, S.* ; Huang, Q.* ; Ertürk, A. ; Zeng, S.*

3D high resolution generative deep-learning network for fluorescence microscopy imaging.

Opt. Lett. 45, 1695-1698 (2020)
DOI PMC
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Microscopic fluorescence imaging serves as a basic tool in many research areas including biology, medicine, and chemistry. With the help of optical clearing, large volume imaging of a mouse brain and even a whole body has been enabled. However, constrained by the physical principles of optical imaging, volume imaging has to balance imaging resolution and speed. Here, we develop a new, to the best of our knowledge, 3D deep learning network based on a dual generative adversarial network (dual-GAN) framework for recovering high-resolution (HR) volume images from high speed acquired low-resolution (LR) volume images. The proposed method does not require a precise image registration process and meanwhile guarantees the predicted HR volume image faithful to its corresponding LR volume image. The results demonstrated that our method can recover 20 x /1.0-NAvolume images from coarsely registered 5 x /0.16-NA volume images collected by light-sheet microscopy. This method. would provide great potential in applications which require high resolution volume imaging.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Korrespondenzautor
Schlagwörter Mice
ISSN (print) / ISBN 0146-9592
e-ISSN 1539-4794
Zeitschrift Optics Letters
Quellenangaben Band: 45, Heft: 7, Seiten: 1695-1698 Artikelnummer: , Supplement: ,
Verlag Optical Society of America (OSA)
Verlagsort 2010 Massachusetts Ave Nw, Washington, Dc 20036 Usa
Nichtpatentliteratur Publikationen
Begutachtungsstatus Peer reviewed
Institut(e) Institute for Tissue Engineering and Regenerative Medicine (ITERM)