PuSH - Publikationsserver des Helmholtz Zentrums München

Daily mortality and particulate matter in different size classes in Erfurt, Germany.

J. Expo. Anal. Environ. Epidemiol. 17, 458-467 (2007)
DOI PMC
The link between elevated concentrations of ambient particulate matter (PM) and increased mortality has been investigated in numerous studies. Here we analyzed the role of different particle size fractions with respect to total and cardio-respiratory mortality in Erfurt, Germany, between 1995 and 2001. Number concentrations (NC) of PM were measured using an aerosol spectrometer consisting of a Differential Mobility Particle Sizer and a Laser Aerosol Spectrometer to characterize particles between 0.01 and 0.5 and between 0.1 and 2.5 mum, respectively. We derived daily means of particle NC for ultrafine (0.01–0.1 mum) and for fine particles (0.01–2.5 mum). Assuming spherical particles of a constant density, we estimated the mass concentrations (MC) of particles in these size ranges. Concurrently, data on daily total and cardio-respiratory death counts were obtained from local health authorities. The data were analyzed using Poisson Generalized Additive Models adjusting for trend, seasonality, influenza epidemics, day of the week, and meteorology using smooth functions or indicator variables. We found statistically significant associations between elevated ultrafine particle (UFP; diameter: 0.01–0.1 mum) NC and total as well as cardio-respiratory mortality, each with a 4 days lag. The relative mortality risk (RR) for a 9748 cm-3 increase in UFP NC was RR=1.029 and its 95% confidence interval (CI)=1.003–1.055 for total mortality. For cardio-respiratory mortality we found: RR=1.031, 95% CI: 1.003–1.060. No association between fine particle MC and mortality was found. This study shows that UFP, representing fresh combustion particles, may be an important component of urban air pollution associated with health effects.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Korrespondenzautor
Schlagwörter mortality; particulate matter; ultrafine particles; cardiovascular mortality; cardio-respiratory mortality
ISSN (print) / ISBN 1053-4245
e-ISSN 1476-5519
Quellenangaben Band: 17, Heft: 5, Seiten: 458-467 Artikelnummer: , Supplement: ,
Verlag Nature Publishing Group
Nichtpatentliteratur Publikationen
Begutachtungsstatus Peer reviewed