Peeken, J.C. ; Shouman, M.A.* ; Kroenke, M.* ; Rauscher, I.* ; Maurer, T.* ; Gschwend, J.E.* ; Eiber, M.* ; Combs, S.E.
     
 
    
        
A CT-based radiomics model to detect prostate cancer lymph node metastases in PSMA radioguided surgery patients.
    
    
        
    
    
        
        Eur. J. Nucl. Med. Mol. Imaging 47, 2968-2977 (2020)
    
    
    
		
		
			
				Purpose In recurrent prostate carcinoma, determination of the site of recurrence is crucial to guide personalized therapy. In contrast to prostate-specific membrane antigen (PSMA)-positron emission tomography (PET) imaging, computed tomography (CT) has only limited capacity to detect lymph node metastases (LNM). We sought to develop a CT-based radiomic model to predict LNM status using a PSMA radioguided surgery (RGS) cohort with histological confirmation of all suspected lymph nodes (LNs). Methods Eighty patients that received RGS for resection of PSMA PET/CT-positive LNMs were analyzed. Forty-seven patients (87 LNs) that received inhouse imaging were used as training cohort. Thirty-three patients (62 LNs) that received external imaging were used as testing cohort. As gold standard, histological confirmation was available for all LNs. After preprocessing, 156 radiomic features analyzing texture, shape, intensity, and local binary patterns (LBP) were extracted. The least absolute shrinkage and selection operator (radiomic models) and logistic regression (conventional parameters) were used for modeling. Results Texture and shape features were largely correlated to LN volume. A combined radiomic model achieved the best predictive performance with a testing-AUC of 0.95. LBP features showed the highest contribution to model performance. This model significantly outperformed all conventional CT parameters including LN short diameter (AUC 0.84), LN volume (AUC 0.80), and an expert rating (AUC 0.67). In lymph node-specific decision curve analysis, there was a clinical net benefit above LN short diameter. Conclusion The best radiomic model outperformed conventional measures for detection of LNM demonstrating an incremental value of radiomic features.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        Radiomics ; Prostate Carcinoma ; Psma ; Ct ; Lymph Node ; Radioguided Surgery; Texture Analysis; Pet; Features; Density; Mri
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2020
    
 
    
        Prepublished im Jahr 
        
    
 
    
        HGF-Berichtsjahr
        2020
    
 
    
    
        ISSN (print) / ISBN
        1619-7070
    
 
    
        e-ISSN
        1432-105X
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 47,  
	    Heft: 13,  
	    Seiten: 2968-2977 
	    Artikelnummer: ,  
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Springer
        
 
        
            Verlagsort
            One New York Plaza, Suite 4600, New York, Ny, United States
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
     
    
        POF Topic(s)
        30203 - Molecular Targets and Therapies
    
 
    
        Forschungsfeld(er)
        Radiation Sciences
    
 
    
        PSP-Element(e)
        G-501300-001
    
 
    
        Förderungen
        
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2020-06-02