PuSH - Publikationsserver des Helmholtz Zentrums München

Hombrink, G. ; Wilkens, J.J.* ; Combs, S.E. ; Bartzsch, S.

Simulation and measurement of microbeam dose distribution in lung tissue.

Phys. Med. 75, 77-82 (2020)
Postprint DOI
Open Access Green
Microbeam radiation therapy (MRT), a so far preclinical method in radiation oncology, modulates treatment doses on a micrometre scale. MRT uses treatment fields with a few ten micrometre wide high dose regions (peaks) separated by a few hundred micrometre wide low dose regions (valleys) and was shown to spare tissue much more effectively than conventional radiation therapy at similar tumour control rates. While preclinical research focused primarily on tumours of the central nervous system, recently also lung tumours have been suggested as a potential target for MRT. This study investigates the effect of the lung microstructure, comprising air cavities of a few hundred mi- crometre diameter, on the microbeam dose distribution in lung. In Monte Carlo simulations different models of heterogeneous lung tissue are compared with pure water and homogeneous air -water mixtures. Experimentally, microbeam dose distributions in porous foam material with cavity sizes similar to the size of lung alveoli were measured with film dosimetry at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Simulations and experiments show that the microstructure of the lung has a huge impact on the local doses in the microbeam fields. Locally, material inhomogeneities may change the dose by a factor of 1.7, and also average peak and valley doses substantially differ from those in homogeneous material. Our results imply that accurate dose prediction for MRT in lung requires adequate models of the lung mi- crostructure. Even if only average peak and valley doses are of interest, the assumption of a simple homogeneous air -water mixture is not sufficient. Since anatomic information on a micrometre scale are unavailable for clinical treatment planning, alternative methods and models have to be developed.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
2.485
1.181
2
3
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Microbeams ; Lung ; Dosimetry ; Monte Carlo; X-ray-beams; Radiation-therapy; Microplanar Beam; Synchrotron; Radiotherapy; Trials; Array
Sprache englisch
Veröffentlichungsjahr 2020
HGF-Berichtsjahr 2020
ISSN (print) / ISBN 1120-1797
e-ISSN 1724-191X
Quellenangaben Band: 75, Heft: , Seiten: 77-82 Artikelnummer: , Supplement: ,
Verlag Elsevier
Verlagsort The Boulevard, Langford Lane, Kidlington, Oxford Ox5 1gb, Oxon, England
Begutachtungsstatus Peer reviewed
POF Topic(s) 30203 - Molecular Targets and Therapies
Forschungsfeld(er) Radiation Sciences
PSP-Element(e) G-501300-001
Scopus ID 85086474938
Erfassungsdatum 2020-06-23