PuSH - Publikationsserver des Helmholtz Zentrums München

Ellenbach, N. ; Boulesteix, A.L.* ; Bischl, B.* ; Unger, K. ; Hornung, R.*

Improved outcome prediction across data sources through robust parameter tuning.

J. Classif. 38, 212–231 (2020)
Verlagsversion Forschungsdaten DOI
Open Access Hybrid
Creative Commons Lizenzvertrag
In many application areas, prediction rules trained based on high-dimensional data are subsequently applied to make predictions for observations from other sources, but they do not always perform well in this setting. This is because data sets from different sources can feature (slightly) differing distributions, even if they come from similar populations. In the context of high-dimensional data and beyond, most prediction methods involve one or several tuning parameters. Their values are commonly chosen by maximizing the cross-validated prediction performance on the training data. This procedure, however, implicitly presumes that the data to which the prediction rule will be ultimately applied, follow the same distribution as the training data. If this is not the case, less complex prediction rules that slightly underfit the training data may be preferable. Indeed, a tuning parameter does not only control the degree of adjustment of a prediction rule to the training data, but also, more generally, the degree of adjustment to thedistribution ofthe training data. On the basis of this idea, in this paper we compare various approaches including new procedures for choosing tuning parameter values that lead to better generalizing prediction rules than those obtained based on cross-validation. Most of these approaches use an external validation data set. In our extensive comparison study based on a large collection of 15 transcriptomic data sets, tuning on external data and robust tuning with a tuned robustness parameter are the two approaches leading to better generalizing prediction rules.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
1.156
1.287
1
1
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Prediction ; Robust Modeling ; Tuning Parameter Value Optimization ; Batch Effects; External Validation; Regression; Selection; Models
Sprache englisch
Veröffentlichungsjahr 2020
HGF-Berichtsjahr 2020
ISSN (print) / ISBN 0176-4268
e-ISSN 1432-1343
Quellenangaben Band: 38, Heft: , Seiten: 212–231 Artikelnummer: , Supplement: ,
Verlag Springer
Verlagsort New York
Begutachtungsstatus Peer reviewed
POF Topic(s) 30203 - Molecular Targets and Therapies
Forschungsfeld(er) Radiation Sciences
PSP-Element(e) G-501000-001
Scopus ID 85087561653
Erfassungsdatum 2020-07-24