PuSH - Publikationsserver des Helmholtz Zentrums München

Oteros, J. ; Weber, A.* ; Kutzora, S.* ; Rojo, J. ; Heinze, S.* ; Herr, C.* ; Gebauer, R.* ; Schmidt-Weber, C.B. ; Buters, J.T.M.

An operational robotic pollen monitoring network based on automatic image recognition.

Environ. Res. 191:110031 (2020)
DOI
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
There is high demand for online, real-time and high-quality pollen data. To the moment pollen monitoring has been done manually by highly specialized experts. Here we evaluate the electronic Pollen Information Network (ePIN) comprising 8 automatic BAA500 pollen monitors in Bavaria, Germany. Automatic BAA500 and manual Hirst-type pollen traps were run simultaneously at the same locations for one pollen season. Classifications by BAA500 were checked by experts in pollen identification, which is traditionally considered to be the “gold standard” for pollen monitoring. BAA500 had a multiclass accuracy of over 90%. Correct identification of any individual pollen taxa was always >85%, except for Populus (73%) and Alnus (64%). The BAA500 was more precise than the manual method, with less discrepancies between determinations by pairs of automatic pollen monitors than between pairs of humans. The BAA500 was online for 97% of the time. There was a significant correlation of 0.84 between airborne pollen concentrations from the BAA500 and Hirst-type pollen traps. Due to the lack of calibration samples it is unknown which instrument gives the true concentration. The automatic BAA500 network delivered pollen data rapidly (3 h delay with real-time), reliably and online. We consider the ability to retrospectively check the accuracy of the reported classification essential for any automatic system.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
5.715
1.740
15
16
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Aerobiology ; Allergy ; Baa500 ; Epin ; Hirst ; Quality Control; Quality-control
Sprache englisch
Veröffentlichungsjahr 2020
HGF-Berichtsjahr 2020
ISSN (print) / ISBN 0013-9351
e-ISSN 1096-0953
Quellenangaben Band: 191, Heft: , Seiten: , Artikelnummer: 110031 Supplement: ,
Verlag Elsevier
Verlagsort San Diego, Calif.
Begutachtungsstatus Peer reviewed
POF Topic(s) 30202 - Environmental Health
Forschungsfeld(er) Allergy
PSP-Element(e) G-505400-001
Förderungen Bavarian State Ministry of the Environment and Consumer Protection
Bavarian State Ministry of Health
Scopus ID 85089852650
Erfassungsdatum 2020-10-22