Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Spreading speeds in slowly oscillating environments.
Bull. Math. Biol. 72, 1166-1191 (2010)
In this paper, we derive exact asymptotic estimates of the spreading speeds of solutions of some reaction-diffusion models in periodic environments with very large periods. Contrarily to the other limiting case of rapidly oscillating environments, there was previously no explicit formula in the case of slowly oscillating environments. The knowledge of these two extremes permits to quantify the effect of environmental fragmentation on the spreading speeds. On the one hand, our analytical estimates and numerical simulations reveal speeds which are higher than expected for Shigesada-Kawasaki-Teramoto models with Fisher-KPP reaction terms in slowly oscillating environments. On the other hand, spreading speeds in very slowly oscillating environments are proved to be 0 in the case of models with strong Allee effects; such an unfavorable effect of aggregation is merely seen in reaction-diffusion models.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Times Cited
Scopus
Cited By
Cited By
Altmetric
1.873
0.910
15
20
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Schlagwörter
Spreading speeds; Reaction-diffusion; Fragmentation; Periodic environment; Allee effect
Sprache
Veröffentlichungsjahr
2010
HGF-Berichtsjahr
2010
ISSN (print) / ISBN
0092-8240
e-ISSN
1522-9602
Zeitschrift
Bulletin of Mathematical Biology
Quellenangaben
Band: 72,
Heft: 5,
Seiten: 1166-1191
Verlag
Springer
Verlagsort
New York, NY
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Biomathematics and Biometry (IBB)
PSP-Element(e)
G-503800-002
Scopus ID
77149153766
Erfassungsdatum
2010-12-31