The impulse response of optoacoustic (photoacoustic) tomographic imaging system depends on several system components, the characteristics of which can influence the quality of reconstructed images. The effect of these system components on reconstruction quality have not been considered in detail so far. Here we combine sparse measurements of the total impulse response (TIR) with a geometric acoustic model to obtain a full characterization of the TIR of a handheld optoacoustic tomography system with concave limited-view acquisition geometry. We then use this synthetic TIR to reconstruct data from phantoms and healthy human volunteers, demonstrating improvements in image resolution and fidelity. The higher accuracy of optoacoustic tomographic reconstruction with TIR correction further improves the diagnostic capability of handheld optoacoustic tomographic systems.