Glucagon-like peptide-1 (GLP-1) is considered to be a promising peptide for the treatment of type 2 diabetes mellitus (T2DM). However, the extremely short half-life of GLP-1 limits its clinical application. Albumin-binding domain (ABD) with high affinity for human serum albumin (HSA) has been used widely for half-life extension of therapeutic peptides and proteins. In the present study, novel GLP-1 receptor agonists were designed by genetic fusion of GLP-1 to three kinds of ABDs with different affinities for HSA: GA3, ABD035 and ABDCon. The bioactivities and half-lives of ABD-fusion GLP-1 proteins with different types and lengths of linkers were investigated in vitro and in vivo. The results demonstrated that ABD-fusion GLP-1 proteins could bind to HSA with high affinity. The blood glucose-lowering effect of GLP-1 was significantly improved and sustained by fusion to ABD. Meanwhile, the fusion proteins significantly inhibited food intake, which was beneficial for T2DM and obesity treatment. The half-life of GLP-1 was substantially extended by virtue of ABD. The in vivo results also showed that a longer linker inserted between GLP-1 and ABD resulted in a higher blood glucose-lowering effect. The fusion proteins generated by fusion of GLP-1 to GA3, ABD035 and ABDCon exhibited similar bioactivities and pharmacokinetics in vivo. These findings demonstrate that ABD-fusion GLP-1 proteins retain the bioactivities of natural GLP-1 and can be further developed for T2DM treatment and weight loss. It also indicates that the ABD-fusion strategy can be generally applicable to any peptide or protein, to improve pharmacodynamic and pharmacokinetic properties.