Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
A distance-based loss for smooth and continuous skin layer segmentation in optoacoustic images.
Lect. Notes Comput. Sc. 12266 LNCS, 309-319 (2020)
Raster-scan optoacoustic mesoscopy (RSOM) is a powerful, non-invasive optical imaging technique for functional, anatomical, and molecular skin and tissue analysis. However, both the manual and the automated analysis of such images are challenging, because the RSOM images have very low contrast, poor signal to noise ratio, and systematic overlaps between the absorption spectra of melanin and hemoglobin. Nonetheless, the segmentation of the epidermis layer is a crucial step for many downstream medical and diagnostic tasks, such as vessel segmentation or monitoring of cancer progression. We propose a novel, shape-specific loss function that overcomes discontinuous segmentations and achieves smooth segmentation surfaces while preserving the same volumetric Dice and IoU. Further, we validate our epidermis segmentation through the sensitivity of vessel segmentation. We found a 20% improvement in Dice for vessel segmentation tasks when the epidermis mask is provided as additional information to the vessel segmentation network.
Impact Factor
Scopus SNIP
Scopus
Cited By
Cited By
Altmetric
0.000
0.776
4
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Sprache
englisch
Veröffentlichungsjahr
2020
HGF-Berichtsjahr
2020
ISSN (print) / ISBN
0302-9743
e-ISSN
1611-3349
Zeitschrift
Lecture Notes in Computer Science
Quellenangaben
Band: 12266 LNCS,
Seiten: 309-319
Verlag
Springer
Verlagsort
Berlin [u.a.]
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-505500-001
Scopus ID
85092792329
Erfassungsdatum
2020-10-25