Schinke, H.* ; Heider, T. ; Herkommer, T. ; Simon, F.* ; Blancke Soares, A.* ; Kranz, G.* ; Samaga, D. ; Dajka, L. ; Feuchtinger, A. ; Walch, A.K. ; Valeanu, L.* ; Walz, C.* ; Kirchner, T.* ; Canis, M.* ; Baumeister, P. ; Belka, C. ; Maihöfer, C. ; Marschner, S. ; Pflugradt, U. ; Ganswindt, U.* ; Hess J. ; Zitzelsberger, H. ; Gires, O.
Digital scoring of EpCAM and slug expression as prognostic markers in head and neck squamous cell carcinomas.
Mol. Oncol. 15, 1040-1053 (2021)
Head and neck squamous cell carcinomas (HNSCCs) have poor clinical outcome owing to therapy resistance and frequent recurrences that are among others attributable to tumor cells in partial epithelial-to-mesenchymal transition (pEMT). We compared side-by-side software-based and visual quantification of immunohistochemistry (IHC) staining of epithelial marker EpCAM and EMT regulator Slug in n = 102 primary HNSCC to assess optimal analysis protocols. IHC scores incorporated expression levels and percentages of positive cells. Digital and visual evaluation of membrane-associated EpCAM yielded correlating scorings, whereas visual evaluation of nuclear Slug resulted in significantly higher overall scores. Multivariable Cox proportional hazard analysis defined the median EpCAM expression levels resulting from visual quantification as an independent prognostic factor of overall survival. Slug expression levels resulting from digital quantification were an independent prognostic factor of recurrence-free survival, locoregional recurrence-free survival, and disease-specific survival. Hence, we propose to use visual assessment for the membrane-associated EpCAM protein, whereas nuclear protein Slug assessment was more accurate following digital measurement.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Antigen Scoring ; Emt ; Epcam ; Hnscc ; Slug; Survival; Snail
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2021
Prepublished im Jahr
2020
HGF-Berichtsjahr
2020
ISSN (print) / ISBN
1574-7891
e-ISSN
1878-0261
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 15,
Heft: 4,
Seiten: 1040-1053
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
Amsterdam [u.a.]
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30504 - Mechanisms of Genetic and Environmental Influences on Health and Disease
30203 - Molecular Targets and Therapies
30505 - New Technologies for Biomedical Discoveries
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Radiation Sciences
Enabling and Novel Technologies
PSP-Element(e)
G-521800-001
G-501000-001
A-630600-001
G-500390-001
Förderungen
Deutsche Forschungsgemeinschaft
Bayerisches Staatsministerium für Wirtschaft, Energie und Technologie BayBIO
Copyright
Erfassungsdatum
2021-02-09