Grosu, S.* ; Rospleszcz, S. ; Hartmann, F.* ; Habes, M.* ; Bamberg, F.* ; Schlett, C.L.* ; Galiè, F.* ; Lorbeer, R.* ; Auweter, S.* ; Selder, S.* ; Buelow, R.* ; Heier, M. ; Rathmann, W.* ; Mueller-Peltzer, K.* ; Ladwig, K.-H. ; Grabe, H.J.* ; Peters, A. ; Ertl-Wagner, B.B.* ; Stoecklein, S.*
Associated factors of white matter hyperintensity volume: A machine-learning approach.
Sci. Rep. 11:2325 (2021)
To identify the most important parameters associated with cerebral white matter hyperintensities (WMH), in consideration of potential collinearity, we used a data-driven machine-learning approach. We analysed two independent cohorts (KORA and SHIP). WMH volumes were derived from cMRI-images (FLAIR). 90 (KORA) and 34 (SHIP) potential determinants of WMH including measures of diabetes, blood-pressure, medication-intake, sociodemographics, life-style factors, somatic/depressive-symptoms and sleep were collected. Elastic net regression was used to identify relevant predictor covariates associated with WMH volume. The ten most frequently selected variables in KORA were subsequently examined for robustness in SHIP. The final KORA sample consisted of 370 participants (58% male; age 55.7 ± 9.1 years), the SHIP sample comprised 854 participants (38% male; age 53.9 ± 9.3 years). The most often selected and highly replicable parameters associated with WMH volume were in descending order age, hypertension, components of the social environment (i.e. widowed, living alone) and prediabetes. A systematic machine-learning based analysis of two independent, population-based cohorts showed, that besides age and hypertension, prediabetes and components of the social environment might play important roles in the development of WMH. Our results enable personal risk assessment for the development of WMH and inform prevention strategies tailored to the individual patient.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Vascular Risk-factors; Small Vessel Disease; Diastolic Blood-pressure; Cerebrovascular-disease; Variable Selection; Unselected Cohort; Alcohol Intake; Lesions; Mri; Population
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2021
Prepublished im Jahr
HGF-Berichtsjahr
2021
ISSN (print) / ISBN
2045-2322
e-ISSN
2045-2322
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 11,
Heft: 1,
Seiten: ,
Artikelnummer: 2325
Supplement: ,
Reihe
Verlag
Nature Publishing Group
Verlagsort
London
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Epidemiology (EPI)
POF Topic(s)
30202 - Environmental Health
Forschungsfeld(er)
Genetics and Epidemiology
PSP-Element(e)
G-504000-010
G-504000-006
G-504000-003
G-504090-001
Förderungen
Projekt DEAL
Siemens Healthcare
German Research Foundation (DFG, Deutsche Forschungsgemeinschaft)
Munich Center of Health Sciences (MC-Health), Ludwig-Maximilians-Universitat, as part of LMUinnovativ
State of Bavaria
Helmholtz Zentrum Munchen-German Research Center for Environmental Health - German Federal Ministry of Education and Research (BMBF)
Copyright
Erfassungsdatum
2021-03-01