Tang, X.* ; Kusmartseva, I.* ; Kulkarni, S.* ; Posgai, A.* ; Speier, S. ; Schatz, D.A.* ; Haller, M.J.* ; Campbell-Thompson, M.* ; Wasserfall, C.H.* ; Roep, B.O.* ; Kaddis, J,S.* ; Atkinson, M.A.*
Image-based machine learning algorithms for disease characterization in the human type 1 diabetes pancreas.
Am. J. Pathol. 191, 454-462 (2021)
Emerging data suggest that type 1 diabetes affects not only the β-cell-containing islets of Langerhans, but also the surrounding exocrine compartment. Using digital pathology, machine learning algorithms were applied to provide high-resolution, whole-slide images of human pancreata to determine if the tissue composition in individuals with or at risk for type 1 diabetes differs from those without diabetes. Transplant-grade pancreata from organ donors were evaluated from 16 nondiabetic autoantibody negative controls, 8 nondiabetic autoantibody positive subjects who have increased type 1 diabetes risk, and 19 persons with type 1 diabetes (0 to 12 years' duration). HALO image analysis algorithms were implemented to compare architecture of the main pancreatic duct as well as cell size, density, and area of acinar, endocrine, ductal, and other nonendocrine, nonexocrine tissues. Type 1 diabetes was found to affect exocrine area, acinar cell density, and size, whereas the type of difference correlated with the presence or absence of insulin-positive cells remaining in the pancreas. These changes were not observed before disease onset, as indicated by modeling cross-sectional data from pancreata of autoantibody positive subjects and those diagnosed with type 1 diabetes. These data provide novel insights into anatomic differences in type 1 diabetes pancreata and demonstrate that machine learning can be adapted for the evaluation of disease processes from cross-sectional data sets.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2021
Prepublished im Jahr
2020
HGF-Berichtsjahr
2020
ISSN (print) / ISBN
0002-9440
e-ISSN
1525-2191
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 191,
Heft: 3,
Seiten: 454-462
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
Ste 800, 230 Park Ave, New York, Ny 10169 Usa
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute of Pancreatic Islet Research (IPI)
POF Topic(s)
90000 - German Center for Diabetes Research
Forschungsfeld(er)
Helmholtz Diabetes Center
PSP-Element(e)
G-502600-005
Förderungen
Juvenile Diabetes Research Foundation
Leona M. & Harry B. Helmsley Charitable Trust
IH National Institute of Diabetes and Digestive and Kidney Diseasesesupported Human Islet Research Network
NIH National Institute of Allergy and Infectious Diseases program project
NIH Common Fund supported Stimulating Peripheral Activity to Relieve Conditions program
NIH National Institute of Diabetes and Digestive and Kidney Diseases
Network for Pancreatic Organ Donors with Diabetes (nPOD)
Copyright
Erfassungsdatum
2021-02-08