PuSH - Publikationsserver des Helmholtz Zentrums München

Lang, D.M. ; Peeken, J.C. ; Combs, S.E. ; Wilkens, J.J.* ; Bartzsch, S.

Deep learning based HPV status prediction for oropharyngeal cancer patients.

Cancers 13:786 (2021)
Verlagsversion DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Infection with the human papillomavirus (HPV) has been identified as a major risk factor for oropharyngeal cancer (OPC). HPV-related OPCs have been shown to be more radiosensitive and to have a reduced risk for cancer related death. Hence, the histological determination of HPV status of cancer patients depicts an essential diagnostic factor. We investigated the ability of deep learning models for imaging based HPV status detection. To overcome the problem of small medical datasets, we used a transfer learning approach. A 3D convolutional network pre-trained on sports video clips was fine-tuned, such that full 3D information in the CT images could be exploited. The video pre-trained model was able to differentiate HPV-positive from HPV-negative cases, with an area under the receiver operating characteristic curve (AUC) of 0.81 for an external test set. In comparison to a 3D convolutional neural network (CNN) trained from scratch and a 2D architecture pre-trained on ImageNet, the video pre-trained model performed best. Deep learning models are capable of CT image-based HPV status determination. Video based pre-training has the ability to improve training for 3D medical data, but further studies are needed for verification.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
6.639
1.292
3
6
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Deep Learning ; Hpv Status ; Machine Learning ; Oropharyngeal Cancer ; Transfer Learning
Sprache englisch
Veröffentlichungsjahr 2021
HGF-Berichtsjahr 2021
ISSN (print) / ISBN 2072-6694
Zeitschrift Cancers
Quellenangaben Band: 13, Heft: 4, Seiten: , Artikelnummer: 786 Supplement: ,
Verlag MDPI
Verlagsort St Alban-anlage 66, Ch-4052 Basel, Switzerland
Begutachtungsstatus Peer reviewed
POF Topic(s) 30203 - Molecular Targets and Therapies
Forschungsfeld(er) Radiation Sciences
PSP-Element(e) G-501300-001
Scopus ID 85100757420
PubMed ID 33668646
Erfassungsdatum 2021-04-21