Nguyen, L. ; Dobiasch, S. ; Schneider, G.* ; Schmid, R.M.* ; Azimzadeh, O. ; Kanev, K.* ; Buschmann, D.* ; Pfaffl, M.W.* ; Bartzsch, S. ; Schmid, T.E. ; Schilling, D. ; Combs, S.E.
Impact of DNA repair and reactive oxygen species levels on radioresistance in pancreatic cancer.
Radiother. Oncol. 159, 265-276 (2021)
PURPOSE: Radioresistance in pancreatic cancer patients remains a critical obstacle to overcome. Understanding the molecular mechanisms underlying radioresistance may achieve better response to radiotherapy and thereby improving the poor treatment outcome. The aim of the present study was to elucidate the mechanisms leading to radioresistance by detailed characterization of isogenic radioresistant and radiosensitive cell lines. METHODS: The human pancreatic cancer cell lines, Panc-1 and MIA PaCa-2 were repeatedly exposed to radiation to generate radioresistant (RR) isogenic cell lines. The surviving cells were expanded, and their radiosensitivity was measured using colony formation assay. Tumor growth delay after irradiation was determined in a mouse pancreatic cancer xenograft model. Gene and protein expression were analyzed using RNA sequencing and Western blot, respectively. Cell cycle distribution and apoptosis (Caspase 3/7) were measured by FACS analysis. Reactive oxygen species generation and DNA damage were analyzed by detection of CM-H2DCFDA and γH2AX staining, respectively. Transwell chamber assays were used to investigate cell migration and invasion. RESULTS: The acquired radioresistance of RR cell lines was demonstrated in vitro and validated in vivo. Ingenuity pathway analysis of RNA sequencing data predicted activation of cell viability in both RR cell lines. RR cancer cell lines demonstrated greater DNA repair efficiency and lower basal and radiation-induced reactive oxygen species levels. Migration and invasion were differentially affected in RR cell lines. CONCLUSIONS: Our data indicate that repeated exposure to irradiation increases the expression of genes involved in cell viability and thereby leads to radioresistance. Mechanistically, increased DNA repair capacity and reduced oxidative stress might contribute to the radioresistant phenotype.
Altmetric
Weitere Metriken?
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Korrespondenzautor
Schlagwörter
Invasion ; Migration ; Pancreatic Cancer ; Rna Sequencing ; Radioresistance; Phase-i Trial; Cell-cycle; Neoadjuvant Chemoradiation; Radiation-therapy; Radiotherapy; Apoptosis; Expression; Chemoradiotherapy; Heterogeneity; Gemcitabine
Keywords plus
ISSN (print) / ISBN
0167-8140
e-ISSN
1879-0887
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 159,
Heft: ,
Seiten: 265-276
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
Elsevier House, Brookvale Plaza, East Park Shannon, Co, Clare, 00000, Ireland
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Förderungen
Hans and Klementia Langmatz Stiftung
School of Medicine, Technical University of Munich, within the KKF Grant
Deutsches Konsortium fur Translationale Krebsforschung (DKTK), Partner Site Munich
Deutsche Forschungsgemeinschaft (DFG, German Research foundation)