Peeken, J.C. ; Neumann, J.* ; Asadpour, R.* ; Leonhardt, Y.* ; Moreira, J.R.* ; Hippe, D.S.* ; Klymenko, O.* ; Foreman, S.C.* ; von Schacky, C.E.* ; Spraker, M.B.* ; Schaub, S.K.* ; Dapper, H.* ; Knebel, C.* ; Mayr, N.A.* ; Woodruff, H.C.* ; Lambin, P.* ; Nyflot, M.J.* ; Gersing, A.S.* ; Combs, S.E.
Prognostic assessment in high-grade soft-tissue sarcoma patients: A comparison of semantic image analysis and radiomics.
Cancers 13:1929 (2021)
Background: In patients with soft-tissue sarcomas of the extremities, the treatment decision is currently regularly based on tumor grading and size. The imaging-based analysis may pose an alternative way to stratify patients’ risk. In this work, we compared the value of MRI-based radiomics with expert-derived semantic imaging features for the prediction of overall survival (OS). Methods: Fat-saturated T2-weighted sequences (T2FS) and contrast-enhanced T1-weighted fatsaturated (T1FSGd) sequences were collected from two independent retrospective cohorts (training: 108 patients; testing: 71 patients). After preprocessing, 105 radiomic features were extracted. Semantic imaging features were determined by three independent radiologists. Three machine learning techniques (elastic net regression (ENR), least absolute shrinkage and selection operator, and random survival forest) were compared to predict OS. Results: ENR models achieved the best predictive performance. Histologies and clinical staging differed significantly between both cohorts. The semantic prognostic model achieved a predictive performance with a C-index of 0.58 within the test set. This was worse compared to a clinical staging system (C-index: 0.61) and the radiomic models (C-indices: T1FSGd: 0.64, T2FS: 0.63). Both radiomic models achieved significant patient stratification. Conclusions: T2FS and T1FSGd-based radiomic models outperformed semantic imaging features for prognostic assessment.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Elastic Net Regression ; Machine Learning ; Mri ; Prognosis ; Radiology ; Radiomics ; Soft-tissue Sarcomas ; Tail Sign
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2021
Prepublished im Jahr
HGF-Berichtsjahr
2021
ISSN (print) / ISBN
2072-6694
e-ISSN
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 13,
Heft: 8,
Seiten: ,
Artikelnummer: 1929
Supplement: ,
Reihe
Verlag
MDPI
Verlagsort
St Alban-anlage 66, Ch-4052 Basel, Switzerland
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30203 - Molecular Targets and Therapies
Forschungsfeld(er)
Radiation Sciences
PSP-Element(e)
G-501300-001
Förderungen
Technische Universität München
Helmholtz Zentrum Munchen
Copyright
Erfassungsdatum
2021-06-08