PuSH - Publikationsserver des Helmholtz Zentrums München

Noninvasive visualization of electrical conductivity in tissues at the micrometer scale.

Sci. Adv. 7:eabd1505 (2021)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
Despite its importance in regulating cellular or tissue function, electrical conductivity can only be visualized in tissue indirectly as voltage potentials using fluorescent techniques, or directly with radio waves. These either requires invasive procedures like genetic modification or suffers from limited resolution. Here, we introduce radio-frequency thermoacoustic mesoscopy (RThAM) for the noninvasive imaging of conductivity by exploiting the direct absorption of near-field ultrashort radio-frequency pulses to stimulate the emission of broadband ultrasound waves. Detection of ultrasound rather than radio waves enables micrometer-scale resolutions, over several millimeters of tissue depth. We confirm an imaging resolution of <30 μm in phantoms and demonstrate microscopic imaging of conductivity correlating to physical structures in 1- and 512-cell zebrafish embryos, as well as larvae. These results support RThAM as a promising method for high-resolution, label-free assessment of conductivity in tissues.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
14.136
3.445
1
3
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter In-vivo; Dielectric Spectrum; Tomography; Membrane; Contrast; Signals; Sensors; Ct
Sprache englisch
Veröffentlichungsjahr 2021
HGF-Berichtsjahr 2021
ISSN (print) / ISBN 2375-2548
e-ISSN 2375-2548
Zeitschrift Science Advances
Quellenangaben Band: 7, Heft: 20, Seiten: , Artikelnummer: eabd1505 Supplement: ,
Verlag American Association for the Advancement of Science (AAAS)
Verlagsort Washington, DC [u.a.]
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
30204 - Cell Programming and Repair
Forschungsfeld(er) Enabling and Novel Technologies
Stem Cell and Neuroscience
PSP-Element(e) G-505500-001
G-500100-001
G-505592-001
Förderungen CSC Fellowship
Deutsche Forschungsgemeinschaft (DFG), Germany
Scopus ID 85105809235
PubMed ID 33980478
Erfassungsdatum 2021-06-18