PuSH - Publikationsserver des Helmholtz Zentrums München

Shit, S.* ; Ezhov, I.* ; Paetzold, J.C. ; Menze, B.*

A ν -Net: Automatic detection and segmentation of aneurysm.

In: International workshop on Cerebral Aneurysm Detection. Berlin [u.a.]: Springer, 2021. 51-57 (Lect. Notes Comput. Sc. ; 12643 LNCS)
DOI
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
We propose an automatic solution for the CADA 2020 challenge to detect aneurysm from Digital Subtraction Angiography (DSA) images. Our method relies on 3D U-net as the backbone and heavy data augmentation with a carefully chosen loss function. We were able to generalize well using our solution (despite training on a small dataset) that is demonstrated through accurate detection and segmentation on the test data.
Scopus
Cited By
Altmetric
1
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Sammelbandbeitrag/Buchkapitel
Schlagwörter Aneurysm ; Detection ; Segmentation
Sprache englisch
Veröffentlichungsjahr 2021
HGF-Berichtsjahr 2021
ISSN (print) / ISBN 0302-9743
e-ISSN 1611-3349
Bandtitel International workshop on Cerebral Aneurysm Detection
Quellenangaben Band: 12643 LNCS, Heft: , Seiten: 51-57 Artikelnummer: , Supplement: ,
Verlag Springer
Verlagsort Berlin [u.a.]
Institut(e) Institute for Tissue Engineering and Regenerative Medicine (ITERM)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-505800-001
Scopus ID 85105923121
Erfassungsdatum 2021-05-28