Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
A ν -Net: Automatic detection and segmentation of aneurysm.
In: International workshop on Cerebral Aneurysm Detection. Berlin [u.a.]: Springer, 2021. 51-57 (Lect. Notes Comput. Sc. ; 12643 LNCS)
We propose an automatic solution for the CADA 2020 challenge to detect aneurysm from Digital Subtraction Angiography (DSA) images. Our method relies on 3D U-net as the backbone and heavy data augmentation with a carefully chosen loss function. We were able to generalize well using our solution (despite training on a small dataset) that is demonstrated through accurate detection and segmentation on the test data.
Scopus
Cited By
Cited By
Altmetric
1
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern
Publikationstyp
Artikel: Sammelbandbeitrag/Buchkapitel
Schlagwörter
Aneurysm ; Detection ; Segmentation
Sprache
englisch
Veröffentlichungsjahr
2021
HGF-Berichtsjahr
2021
ISSN (print) / ISBN
0302-9743
e-ISSN
1611-3349
Bandtitel
International workshop on Cerebral Aneurysm Detection
Zeitschrift
Lecture Notes in Computer Science
Quellenangaben
Band: 12643 LNCS,
Seiten: 51-57
Verlag
Springer
Verlagsort
Berlin [u.a.]
Institut(e)
Institute for Tissue Engineering and Regenerative Medicine (ITERM)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-505800-001
Scopus ID
85105923121
Erfassungsdatum
2021-05-28