Seibold, H. ; Czerny, S.* ; Decke, S.* ; Dieterle, R.* ; Eder, T.* ; Fohr, S.* ; Hahn, N.* ; Hartmann, R.* ; Heindl, C.* ; Kopper, P.* ; Lepke, D.* ; Loidl, V.* ; Mandl, M.* ; Musiol, S.* ; Peter, J.* ; Piehler, A.* ; Rojas, E.* ; Schmid, S.* ; Schmidt, H.* ; Schmoll, M.* ; Schneider, L.* ; To, X.Y.* ; Tran, V.* ; Völker, A.* ; Wagner, M.* ; Wagner, J.* ; Waize, M.* ; Wecker, H.* ; Yang, R.* ; Zellner, S.* ; Nalenz, M.*
     
 
    
        
A computational reproducibility study of PLOS ONE articles featuring longitudinal data analyses.
    
    
        
    
    
        
        PLoS ONE 16:e0251194 (2021)
    
    
    
		
		
			
				Computational reproducibility is a corner stone for sound and credible research. Especially in complex statistical analyses-such as the analysis of longitudinal data-reproducing results is far from simple, especially if no source code is available. In this work we aimed to reproduce analyses of longitudinal data of 11 articles published in PLOS ONE. Inclusion criteria were the availability of data and author consent. We investigated the types of methods and software used and whether we were able to reproduce the data analysis using open source software. Most articles provided overview tables and simple visualisations. Generalised Estimating Equations (GEEs) were the most popular statistical models among the selected articles. Only one article used open source software and only one published part of the analysis code. Replication was difficult in most cases and required reverse engineering of results or contacting the authors. For three articles we were not able to reproduce the results, for another two only parts of them. For all but two articles we had to contact the authors to be able to reproduce the results. Our main learning is that reproducing papers is difficult if no code is supplied and leads to a high burden for those conducting the reproductions. Open data policies in journals are good, but to truly boost reproducibility we suggest adding open code policies.
			
			
				
			
		 
		
			
				
					
					Impact Factor
					Scopus SNIP
					Web of Science
Times Cited
					Scopus
Cited By
					
					Altmetric
					
				 
				
			 
		 
		
     
    
        Publikationstyp
        Artikel: Journalartikel
    
 
    
        Dokumenttyp
        Wissenschaftlicher Artikel
    
 
    
        Typ der Hochschulschrift
        
    
 
    
        Herausgeber
        
    
    
        Schlagwörter
        
    
 
    
        Keywords plus
        
    
 
    
    
        Sprache
        englisch
    
 
    
        Veröffentlichungsjahr
        2021
    
 
    
        Prepublished im Jahr 
        
    
 
    
        HGF-Berichtsjahr
        2021
    
 
    
    
        ISSN (print) / ISBN
        1932-6203
    
 
    
        e-ISSN
        
    
 
    
        ISBN
        
    
 
    
        Bandtitel
        
    
 
    
        Konferenztitel
        
    
 
	
        Konferzenzdatum
        
    
     
	
        Konferenzort
        
    
 
	
        Konferenzband
        
    
 
     
		
    
        Quellenangaben
        
	    Band: 16,  
	    Heft: 6,  
	    Seiten: ,  
	    Artikelnummer: e0251194 
	    Supplement: ,  
	
    
 
  
        
            Reihe
            
        
 
        
            Verlag
            Public Library of Science (PLoS)
        
 
        
            Verlagsort
            Lawrence, Kan.
        
 
	
        
            Tag d. mündl. Prüfung
            0000-00-00
        
 
        
            Betreuer
            
        
 
        
            Gutachter
            
        
 
        
            Prüfer
            
        
 
        
            Topic
            
        
 
	
        
            Hochschule
            
        
 
        
            Hochschulort
            
        
 
        
            Fakultät
            
        
 
    
        
            Veröffentlichungsdatum
            0000-00-00
        
 
         
        
            Anmeldedatum
            0000-00-00
        
 
        
            Anmelder/Inhaber
            
        
 
        
            weitere Inhaber
            
        
 
        
            Anmeldeland
            
        
 
        
            Priorität
            
        
 
    
        Begutachtungsstatus
        Peer reviewed
    
 
     
    
        POF Topic(s)
        30205 - Bioengineering and Digital Health
    
 
    
        Forschungsfeld(er)
        Enabling and Novel Technologies
    
 
    
        PSP-Element(e)
        G-530004-001
    
 
    
        Förderungen
        German Federal Ministry of Education and Research (BMBF)
    
 
    
        Copyright
        
    
 	
    
    
    
    
    
        Erfassungsdatum
        2021-07-13