Proteomic profiling of low muscle and high fat mass: A machine learning approach in the KORA S4/FF4 study.
J. Cachexia Sarcopenia Muscle 12, 1011–1023 (2021)
BACKGROUND: The coexistence of low muscle mass and high fat mass, two interrelated conditions strongly associated with declining health status, has been characterized by only a few protein biomarkers. High-throughput proteomics enable concurrent measurement of numerous proteins, facilitating the discovery of potentially new biomarkers. METHODS: Data derived from the prospective population-based Cooperative Health Research in the Region of Augsburg S4/FF4 cohort study (median follow-up time: 13.5 years) included 1478 participants (756 men and 722 women) aged 55-74 years in the cross-sectional and 608 participants (315 men and 293 women) in the longitudinal analysis. Appendicular skeletal muscle mass (ASMM) and body fat mass index (BFMI) were determined through bioelectrical impedance analysis at baseline and follow-up. At baseline, 233 plasma proteins were measured using proximity extension assay. We implemented boosting with stability selection to enable false positives-controlled variable selection to identify new protein biomarkers of low muscle mass, high fat mass, and their combination. We evaluated prediction models developed based on group least absolute shrinkage and selection operator (lasso) with 100× bootstrapping by cross-validated area under the curve (AUC) to investigate if proteins increase the prediction accuracy on top of classical risk factors. RESULTS: In the cross-sectional analysis, we identified kallikrein-6, C-C motif chemokine 28 (CCL28), and tissue factor pathway inhibitor as previously unknown biomarkers for muscle mass [association with low ASMM: odds ratio (OR) per 1-SD increase in log2 normalized protein expression values (95% confidence interval (CI)): 1.63 (1.37-1.95), 1.31 (1.14-1.51), 1.24 (1.06-1.45), respectively] and serine protease 27 for fat mass [association with high BFMI: OR (95% CI): 0.73 (0.61-0.86)]. CCL28 and metalloproteinase inhibitor 4 (TIMP4) constituted new biomarkers for the combination of low muscle and high fat mass [association with low ASMM combined with high BFMI: OR (95% CI): 1.32 (1.08-1.61), 1.28 (1.03-1.59), respectively]. Including protein biomarkers selected in ≥90% of group lasso bootstrap iterations on top of classical risk factors improved the performance of models predicting low ASMM, high BFMI, and their combination [delta AUC (95% CI): 0.16 (0.13-0.20), 0.22 (0.18-0.25), 0.12 (0.08-0.17), respectively]. In the longitudinal analysis, N-terminal prohormone brain natriuretic peptide (NT-proBNP) was the only protein selected for loss in ASMM and loss in ASMM combined with gain in BFMI over 14 years [OR (95% CI): 1.40 (1.10-1.77), 1.60 (1.15-2.24), respectively]. CONCLUSIONS: Proteomic profiling revealed CCL28 and TIMP4 as new biomarkers of low muscle mass combined with high fat mass and NT-proBNP as a key biomarker of loss in muscle mass combined with gain in fat mass. Proteomics enable us to accelerate biomarker discoveries in muscle research.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Appendicular Skeletal Muscle Mass ; Body Fat Mass Index ; Fat Mass ; Machine Learning ; Muscle Mass ; Proteomics; Growth-factor-i; Sarcopenic Obesity; Skeletal-muscle; Cardiovascular-disease; Older-adults; Insulin; Men; Risk; Interleukin-6; Physiology
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2021
Prepublished im Jahr
HGF-Berichtsjahr
2021
ISSN (print) / ISBN
2190-5991
e-ISSN
2190-6009
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 12,
Heft: ,
Seiten: 1011–1023
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Springer
Verlagsort
Heidelberg
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30202 - Environmental Health
30203 - Molecular Targets and Therapies
Forschungsfeld(er)
Genetics and Epidemiology
Enabling and Novel Technologies
PSP-Element(e)
G-504000-002
G-504000-010
G-505700-001
A-630700-001
G-504090-001
Förderungen
The KORAstudy was initiated and financed by the Helmholtz Zentrum München - GermanResearch Center for Environmental Health, which is funded by the German FederalMinistry of Education and Research (BMBF) and by the State of Bavaria. Thepresent study was su
Copyright
Erfassungsdatum
2021-07-05