PuSH - Publikationsserver des Helmholtz Zentrums München

Compera, N. ; Atwell, S. ; Wirth, J. ; Wolfrum, B.* ; Meier, M.

Upscaling of pneumatic membrane valves for the integration of 3D cell cultures on chip.

Lab Chip 21, 2986-2996 (2021)
Verlagsversion DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
Microfluidic large-scale integration (mLSI) technology enables the automation of two-dimensional (2D) cell culture processes in a highly parallel manner. Despite the wide range of biological applications of mLSI chips, manufacturing limitations of the central functional element, the pneumatic membrane valve (PMV), make the technology inaccessible for integrating tissue cultures and organoids with dimensions larger than tens of microns. In this study, we developed microtechnology processes to upscale PMVs for mLSI chips by combining 3D printing and soft lithography. Therefore, we developed a robust soft lithography protocol for the production of polydimethylsiloxane chips with PMVs from 3D-printed acrylate and wax molds. While scaled-up PMVs manufactured from acrylate-printed molds exhibited channel profiles with staircases, owing to the inherent 3D stereolithography printing process, PMVs manufactured from reflowed wax molds exhibited a semi-half-rounded channel profile. PMVs with different channel profiles showed closing pressures between 130 and 22.5 kPa, respectively. We demonstrated the functionality of the scaled-up PMVs by forming and maintaining 3D cell cultures from mouse fibroblasts (NIH3T3), human induced pluripotent stem cells (hiPSCs), and human adipose-derived adult stem cells (hASCs), with a narrow size distribution between 124 and 136 μm. Further, parallel and serial design of PMVs on an mLSI chip is used to first form and culture 3D cell cultures before fusing them within a defined flow process. Unit cell designs with upscaled PMVs enabled parallel formation, culturing, trapping, retrieval, and fusion of 3D cell cultures. Thus, the presented additive manufacturing strategy for mLSI chips will foster new developments for highly parallel 3D cell culture screening applications.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
6.799
1.675
1
9
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Microfluidic Valves; Rapid Production; Platform; Fusion; Spheroids; System; Device; Pumps
Sprache englisch
Veröffentlichungsjahr 2021
HGF-Berichtsjahr 2021
ISSN (print) / ISBN 1473-0197
e-ISSN 1473-0189
Zeitschrift LAB on a chip
Quellenangaben Band: 21, Heft: 15, Seiten: 2986-2996 Artikelnummer: , Supplement: ,
Verlag Royal Society of Chemistry (RSC)
Verlagsort Cambridge
Begutachtungsstatus Peer reviewed
Institut(e) Helmholtz Pioneer Campus (HPC)
POF Topic(s) 30201 - Metabolic Health
Forschungsfeld(er) Pioneer Campus
PSP-Element(e) G-510002-001
Förderungen Helmholtz Pioneer Campus
ERC Consolidator Grant
Scopus ID 85111752897
PubMed ID 34143169
Erfassungsdatum 2021-07-13