Efficient detection of longitudinal bacteria fission using transfer learning in deep neural networks.
Front. Microbiol. 12:645972 (2021)
A very common way to classify bacteria is through microscopic images. Microscopic cell counting is a widely used technique to measure microbial growth. To date, fully automated methodologies are available for accurate and fast measurements; yet for bacteria dividing longitudinally, as in the case of Candidatus Thiosymbion oneisti, its cell count mainly remains manual. The identification of this type of cell division is important because it helps to detect undergoing cellular division from those which are not dividing once the sample is fixed. Our solution automates the classification of longitudinal division by using a machine learning method called residual network. Using transfer learning, we train a binary classification model in fewer epochs compared to the model trained without it. This potentially eliminates most of the manual labor of classifying the type of bacteria cell division. The approach is useful in automatically labeling a certain bacteria division after detecting and segmenting (extracting) individual bacteria images from microscopic images of colonies.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Bacteria Classification ; Bacteria Division ; Deep Learning ; Image Processing ; Image Segmentation ; Longitudinal Bacterial Fission ; Transfer Learning
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2021
Prepublished im Jahr
HGF-Berichtsjahr
2021
ISSN (print) / ISBN
1664-302X
e-ISSN
1664-302X
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 12,
Heft: ,
Seiten: ,
Artikelnummer: 645972
Supplement: ,
Reihe
Verlag
Frontiers
Verlagsort
Avenue Du Tribunal Federal 34, Lausanne, Ch-1015, Switzerland
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Strategy and Digitalization (DIG)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-505900-001
Förderungen
Helmholtz Zentrum Munchen Germany
Copyright
Erfassungsdatum
2021-07-19