PuSH - Publikationsserver des Helmholtz Zentrums München

Garcia Perez, C. ; Ito, K. ; Geijo, J.* ; Feldbauer, R.* ; Schreiber, N. ; zu Castell, W.

Efficient detection of longitudinal bacteria fission using transfer learning in deep neural networks.

Front. Microbiol. 12:645972 (2021)
Verlagsversion Forschungsdaten DOI PMC
Open Access Gold
Creative Commons Lizenzvertrag
A very common way to classify bacteria is through microscopic images. Microscopic cell counting is a widely used technique to measure microbial growth. To date, fully automated methodologies are available for accurate and fast measurements; yet for bacteria dividing longitudinally, as in the case of Candidatus Thiosymbion oneisti, its cell count mainly remains manual. The identification of this type of cell division is important because it helps to detect undergoing cellular division from those which are not dividing once the sample is fixed. Our solution automates the classification of longitudinal division by using a machine learning method called residual network. Using transfer learning, we train a binary classification model in fewer epochs compared to the model trained without it. This potentially eliminates most of the manual labor of classifying the type of bacteria cell division. The approach is useful in automatically labeling a certain bacteria division after detecting and segmenting (extracting) individual bacteria images from microscopic images of colonies.
Impact Factor
Scopus SNIP
Altmetric
5.640
1.558
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Bacteria Classification ; Bacteria Division ; Deep Learning ; Image Processing ; Image Segmentation ; Longitudinal Bacterial Fission ; Transfer Learning
Sprache englisch
Veröffentlichungsjahr 2021
HGF-Berichtsjahr 2021
ISSN (print) / ISBN 1664-302X
e-ISSN 1664-302X
Quellenangaben Band: 12, Heft: , Seiten: , Artikelnummer: 645972 Supplement: ,
Verlag Frontiers
Verlagsort Avenue Du Tribunal Federal 34, Lausanne, Ch-1015, Switzerland
Begutachtungsstatus Peer reviewed
Institut(e) Strategy and Digitalization (DIG)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-505900-001
Förderungen Helmholtz Zentrum Munchen Germany
Scopus ID 85108343929
PubMed ID 34168623
Erfassungsdatum 2021-07-19