PuSH - Publikationsserver des Helmholtz Zentrums München

Taheri, M.H.* ; Pourmehran, O.* ; Sarafraz, M.M.* ; Ahookhosh, K.* ; Farnoud, A. ; Cui, X.*

Effect of swirling flow and particle-release pattern on drug delivery to human tracheobronchial airways.

Biomech. Model. Mechanobiol., DOI: 10.1007/s10237-021-01518-5 (2021)
DOI PMC
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
The present study aims to investigate the effect of swirling flow on particle deposition in a realistic human airway. A computational fluid dynamic (CFD) model was utilized for the simulation of oral inhalation and particle transport patterns, considering the k-ω turbulence model. Lagrangian particle tracking was used to track the particles’ trajectories. A normal breathing condition (30 L/min) was applied, and two-micron particles were injected into the mouth, considering swirling flow to the oral inhalation airflow. Different cases were considered for releasing the particles, which evaluated the impacts of various parameters on the deposition efficiency (DE), including the swirl intensity, injection location and pattern of the particle. The work's novelty is applying several injection locations and diameters simultaneously. The results show that the swirling flow enhances the particle deposition efficiency (20–40%) versus no-swirl flow, especially in the mouth. However, releasing particles inside the mouth, or injecting them randomly with a smaller injection diameter (dinj) reduced DE in swirling flow condition, about 50 to 80%. Injecting particles inside the mouth can decrease DE by about 20%, and releasing particles with smaller dinj leads to 50% less DE in swirling flow. In conclusion, it is indicated that the airflow condition is an important parameter for a reliable drug delivery, and it is more beneficial to keep the inflow uniform and avoid swirling flow.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
2.963
1.225
1
4
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Computational Fluid Dynamics (cfd) ; Deposition Efficiency ; Discrete Phase Model (dpm) ; Drug Delivery ; Swirling Flow; Air-flow; Aerosol Delivery; Deposition; Simulation; Transport; Models; Lung
Sprache englisch
Veröffentlichungsjahr 2021
HGF-Berichtsjahr 2021
ISSN (print) / ISBN 1617-7959
e-ISSN 1617-7940
Verlag Springer
Verlagsort Tiergartenstrasse 17, D-69121 Heidelberg, Germany
POF Topic(s) 30202 - Environmental Health
Forschungsfeld(er) Lung Research
PSP-Element(e) G-505000-008
Scopus ID 85114804411
PubMed ID 34515918
Erfassungsdatum 2021-10-11