Risk prediction of cardiovascular events by exploration of molecular data with explainable artificial intelligence.
Int. J. Mol. Sci. 22:10291 (2021)
Cardiovascular diseases (CVD) annually take almost 18 million lives worldwide. Most lethal events occur months or years after the initial presentation. Indeed, many patients experience repeated complications or require multiple interventions (recurrent events). Apart from affecting the individual, this leads to high medical costs for society. Personalized treatment strategies aiming at prediction and prevention of recurrent events rely on early diagnosis and precise prognosis. Complementing the traditional environmental and clinical risk factors, multi-omics data provide a holistic view of the patient and disease progression, enabling studies to probe novel angles in risk stratification. Specifically, predictive molecular markers allow insights into regulatory networks, pathways, and mechanisms underlying disease. Moreover, artificial intelligence (AI) represents a powerful, yet adaptive, framework able to recognize complex patterns in large-scale clinical and molecular data with the potential to improve risk prediction. Here, we review the most recent advances in risk prediction of recurrent cardiovascular events, and discuss the value of molecular data and biomarkers for understanding patient risk in a systems biology context. Finally, we introduce explainable AI which may improve clinical decision systems by making predictions transparent to the medical practitioner.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Review
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Ai ; Biomarkers ; Cardiovascular Disease ; Coronary Artery Disease ; Explainable Artificial Intelligence ; Genomics ; Machine Learning ; Molecular Networks ; Multi-omics ; Proteomics; Coronary-artery-disease; Deep Neural-networks; Heart-disease; Alzheimers-disease; Recurrent Events; Vascular Events; Gene-ontology; Score; Association; Validation
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2021
Prepublished im Jahr
HGF-Berichtsjahr
2021
ISSN (print) / ISBN
1661-6596
e-ISSN
1422-0067
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 22,
Heft: 19,
Seiten: ,
Artikelnummer: 10291
Supplement: ,
Reihe
Verlag
MDPI
Verlagsort
Basel
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-553500-001
Förderungen
Federal Ministry of Education and Research
Bavarian State Ministry of Health and Care
German Research Foundation (DFG)
Leducq Foundation for Cardiovascular Research
British Heart Foundation (BHF)/German Centre of Cardiovascular Research (DZHK)-collaboration
German Centre of Cardiovascular Research
German Federal Ministry of Education and Research (BMBF)
Copyright
Erfassungsdatum
2021-11-15