The removal of transformed cells via induction of apoptosis through intercellular signalling by surrounding cells is supposed to represent an important control mechanism limiting carcinogenesis. Low doses of radiation influence the efficiency of this anti-carcinogenesis process, indicating possible beneficial effects of low doses of radiation mediated by intercellular communication ('non-targeted effects'). To quantitatively understand the signalling system involved and the effects of radiation and to assess the role of this phenomenon in radiation-induced carcinogenesis, multi-scale modelling studies have been started. The proposed kinetic model takes into account (i) triggering of the effector function in cells in the vicinity of transformed cells, (ii) intercellular signalling between effector and transformed cells and (iii) execution of apoptosis in attacked cells. The systems model without radiation perturbance is reviewed. First results accounting for radiation-induced modulations of the signalling schemes are presented.