Inverse Dirichlet weighting enables reliable training of physics informed neural networks.
Mach. Learn.: Sci. Technol. 3:015026 (2022)
We characterize and remedy a failure mode that may arise from multi-scale dynamics with scale imbalances during training of deep neural networks, such as physics informed neural networks (PINNs). PINNs are popular machine-learning templates that allow for seamless integration of physical equation models with data. Their training amounts to solving an optimization problem over a weighted sum of data-fidelity and equation-fidelity objectives. Conflicts between objectives can arise from scale imbalances, heteroscedasticity in the data, stiffness of the physical equation, or from catastrophic interference during sequential training. We explain the training pathology arising from this and propose a simple yet effective inverse Dirichlet weighting strategy to alleviate the issue. We compare with Sobolev training of neural networks, providing the baseline of analytically epsilon-optimal training. We demonstrate the effectiveness of inverse Dirichlet weighting in various applications, including a multi-scale model of active turbulence, where we show orders of magnitude improvement in accuracy and convergence over conventional PINN training. For inverse modeling using sequential training, we find that inverse Dirichlet weighting protects a PINN against catastrophic forgetting.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Physics-informed Neural Networks ; Multi-scale Modeling ; Active Turbulence ; Catastrophic Forgetting ; Multi-objective Training ; Gradient Flow Regularization; Algorithm
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2022
Prepublished im Jahr
HGF-Berichtsjahr
2022
ISSN (print) / ISBN
2632-2153
e-ISSN
2632-2153
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 3,
Heft: 1,
Seiten: ,
Artikelnummer: 015026
Supplement: ,
Reihe
Verlag
Institute of Physics Publishing (IOP)
Verlagsort
Temple Circus, Temple Way, Bristol Bs1 6be, England
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-503800-001
Förderungen
Saxon Ministry for Science, Culture and Tourism (SMWK)
German Research Foundation (DFG)
Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig - Federal Ministry of Education and Research (BMBF)
Center for Advanced Systems Understanding (CASUS) - Germany's Federal Ministry of Education and Research (BMBF)
Copyright
Erfassungsdatum
2022-06-01