Han, X.* ; Yu, Z.* ; Zhuo, Y.* ; Zhao, B.* ; Ren, Y.* ; Lamm, L. ; Xue, X.* ; Feng, J.* ; Marr, C. ; Shan, F.* ; Peng, T. ; Zhang, X.Y.*
The value of longitudinal clinical data and paired CT scans in predicting the deterioration of COVID-19 revealed by an artificial intelligence system.
iScience 25:104227 (2022)
The respective value of clinical data and CT examinations in predicting COVID-19 progression is unclear, because the CT scans and clinical data previously used are not synchronized in time. To address this issue, we collected 119 COVID-19 patients with 341 longitudinal CT scans and paired clinical data, and developed an AI system for the prediction of COVID-19 deterioration. By combining features extracted from CT and clinical data with our system, we can predict whether a patient will develop severe symptoms during hospitalization. Complementary to clinical data, CT examinations show significant add-on values for the prediction of COVID-19 progression in the early stage of COVID-19, especially in the 6th to 8th day after the symptom onset, indicating that this is the ideal time window for the introduction of CT examinations. We release our AI system to provide clinicians with additional assistance to optimize CT usage in the clinical workflow.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Artificial Intelligence ; Health Sciences ; Machine Learning ; Microbiology
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2022
Prepublished im Jahr
HGF-Berichtsjahr
2022
ISSN (print) / ISBN
2589-0042
e-ISSN
2589-0042
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 25,
Heft: 5,
Seiten: ,
Artikelnummer: 104227
Supplement: ,
Reihe
Verlag
Elsevier
Verlagsort
Amsterdam ; Bosten ; London ; New York ; Oxford ; Paris ; Philadelphia ; San Diego ; St. Louis
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
POF Topic(s)
30205 - Bioengineering and Digital Health
30203 - Molecular Targets and Therapies
Forschungsfeld(er)
Enabling and Novel Technologies
Pioneer Campus
PSP-Element(e)
G-530006-001
G-510008-001
G-540007-001
Förderungen
Horizon 2020
Science and Technology Commission of Shanghai Municipality
Fudan University
National Natural Science Foundation of China
European Research Council
Horizon 2020 Framework Programme
ZJLab
Copyright
Erfassungsdatum
2022-07-28