PuSH - Publikationsserver des Helmholtz Zentrums München

Mishra, A.K.* ; Müller, C.L.

Negative binomial factor regression with application to microbiome data analysis.

Stat. Med. 41, 2786-2803 (2022)
Verlagsversion Forschungsdaten DOI PMC
Open Access Hybrid
Creative Commons Lizenzvertrag
The human microbiome provides essential physiological functions and helps maintain host homeostasis via the formation of intricate ecological host-microbiome relationships. While it is well established that the lifestyle of the host, dietary preferences, demographic background, and health status can influence microbial community composition and dynamics, robust generalizable associations between specific host-associated factors and specific microbial taxa have remained largely elusive. Here, we propose factor regression models that allow the estimation of structured parsimonious associations between host-related features and amplicon-derived microbial taxa. To account for the overdispersed nature of the amplicon sequencing count data, we propose negative binomial reduced rank regression (NB-RRR) and negative binomial co-sparse factor regression (NB-FAR). While NB-RRR encodes the underlying dependency among the microbial abundances as outcomes and the host-associated features as predictors through a rank-constrained coefficient matrix, NB-FAR uses a sparse singular value decomposition of the coefficient matrix. The latter approach avoids the notoriously difficult joint parameter estimation by extracting sparse unit-rank components of the coefficient matrix sequentially, effectively delivering interpretable bi-clusters of taxa and host-associated factors. To solve the nonconvex optimization problems associated with these factor regression models, we present a novel iterative block-wise majorization procedure. Extensive simulation studies and an application to the microbial abundance data from the American Gut Project (AGP) demonstrate the efficacy of the proposed procedure. In the AGP data, we identify several factors that strongly link dietary habits and host life style to specific microbial families.
Impact Factor
Scopus SNIP
Altmetric
2.497
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter American Gut Project ; Microbiome ; Multivariate Analysis ; Overdispersed Count Data ; Reduced Rank Regression ; Sparse Singular Value Decomposition
Sprache englisch
Veröffentlichungsjahr 2022
HGF-Berichtsjahr 2022
ISSN (print) / ISBN 0277-6715
e-ISSN 1097-0258
Quellenangaben Band: 41, Heft: 15, Seiten: 2786-2803 Artikelnummer: , Supplement: ,
Verlag Wiley
Begutachtungsstatus Peer reviewed
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-503800-001
Scopus ID 85128675025
PubMed ID 35466418
Erfassungsdatum 2022-09-05