Dal Toso, L.* ; Chalampalakis, Z.* ; Buvat, I.* ; Comtat, C.* ; Cook, G.* ; Goh, V.* ; Schnabel, J.A. ; Marsden, P.K.*
Improved 3D tumour definition and quantification of uptake in simulated lung tumours using deep learning.
Phys. Med. Biol. 67:095013 (2022)
Objective. In clinical positron emission tomography (PET) imaging, quantification of radiotracer uptake in tumours is often performed using semi-quantitative measurements such as the standardised uptake value (SUV). For small objects, the accuracy of SUV estimates is limited by the noise properties of PET images and the partial volume effect. There is need for methods that provide more accurate and reproducible quantification of radiotracer uptake. Approach. In this work, we present a deep learning approach with the aim of improving quantification of lung tumour radiotracer uptake and tumour shape definition. A set of simulated tumours, assigned with 'ground truth' radiotracer distributions, are used to generate realistic PET raw data which are then reconstructed into PET images. In this work, the ground truth images are generated by placing simulated tumours characterised by different sizes and activity distributions in the left lung of an anthropomorphic phantom. These images are then used as input to an analytical simulator to simulate realistic raw PET data. The PET images reconstructed from the simulated raw data and the corresponding ground truth images are used to train a 3D convolutional neural network. Results. When tested on an unseen set of reconstructed PET phantom images, the network yields improved estimates of the corresponding ground truth. The same network is then applied to reconstructed PET data generated with different point spread functions. Overall the network is able to recover better defined tumour shapes and improved estimates of tumour maximum and median activities. Significance. Our results suggest that the proposed approach, trained on data simulated with one scanner geometry, has the potential to restore PET data acquired with different scanners.
Impact Factor
Scopus SNIP
Web of Science
Times Cited
Scopus
Cited By
Altmetric
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Schlagwörter
Pet ; Cnn ; Quantification
Keywords plus
Sprache
englisch
Veröffentlichungsjahr
2022
Prepublished im Jahr
HGF-Berichtsjahr
2022
ISSN (print) / ISBN
0031-9155
e-ISSN
1361-6560
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 67,
Heft: 9,
Seiten: ,
Artikelnummer: 095013
Supplement: ,
Reihe
Verlag
Institute of Physics Publishing (IOP)
Verlagsort
Bristol
Tag d. mündl. Prüfung
0000-00-00
Betreuer
Gutachter
Prüfer
Topic
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s)
30205 - Bioengineering and Digital Health
Forschungsfeld(er)
Enabling and Novel Technologies
PSP-Element(e)
G-507100-001
Förderungen
Cancer ResearchUKNational Cancer Imaging Translational Accelerator Award
General Electric
National Institute for Health Research (NIHR)
UK Research & Innovation (UKRI) Engineering & Physical Sciences Research Council (EPSRC)
SKA South Africa
Copyright
Erfassungsdatum
2022-06-30