PuSH - Publikationsserver des Helmholtz Zentrums München

Dal Toso, L.* ; Chalampalakis, Z.* ; Buvat, I.* ; Comtat, C.* ; Cook, G.* ; Goh, V.* ; Schnabel, J.A. ; Marsden, P.K.*

Improved 3D tumour definition and quantification of uptake in simulated lung tumours using deep learning.

Phys. Med. Biol. 67:095013 (2022)
Verlagsversion DOI
Open Access Hybrid
Creative Commons Lizenzvertrag
Objective. In clinical positron emission tomography (PET) imaging, quantification of radiotracer uptake in tumours is often performed using semi-quantitative measurements such as the standardised uptake value (SUV). For small objects, the accuracy of SUV estimates is limited by the noise properties of PET images and the partial volume effect. There is need for methods that provide more accurate and reproducible quantification of radiotracer uptake. Approach. In this work, we present a deep learning approach with the aim of improving quantification of lung tumour radiotracer uptake and tumour shape definition. A set of simulated tumours, assigned with 'ground truth' radiotracer distributions, are used to generate realistic PET raw data which are then reconstructed into PET images. In this work, the ground truth images are generated by placing simulated tumours characterised by different sizes and activity distributions in the left lung of an anthropomorphic phantom. These images are then used as input to an analytical simulator to simulate realistic raw PET data. The PET images reconstructed from the simulated raw data and the corresponding ground truth images are used to train a 3D convolutional neural network. Results. When tested on an unseen set of reconstructed PET phantom images, the network yields improved estimates of the corresponding ground truth. The same network is then applied to reconstructed PET data generated with different point spread functions. Overall the network is able to recover better defined tumour shapes and improved estimates of tumour maximum and median activities. Significance. Our results suggest that the proposed approach, trained on data simulated with one scanner geometry, has the potential to restore PET data acquired with different scanners.
Impact Factor
Scopus SNIP
Altmetric
4.174
0.000
Tags
Anmerkungen
Besondere Publikation
Auf Hompepage verbergern

Zusatzinfos bearbeiten
Eigene Tags bearbeiten
Privat
Eigene Anmerkung bearbeiten
Privat
Auf Publikationslisten für
Homepage nicht anzeigen
Als besondere Publikation
markieren
Publikationstyp Artikel: Journalartikel
Dokumenttyp Wissenschaftlicher Artikel
Schlagwörter Pet ; Cnn ; Quantification
Sprache englisch
Veröffentlichungsjahr 2022
HGF-Berichtsjahr 2022
ISSN (print) / ISBN 0031-9155
e-ISSN 1361-6560
Quellenangaben Band: 67, Heft: 9, Seiten: , Artikelnummer: 095013 Supplement: ,
Verlag Institute of Physics Publishing (IOP)
Verlagsort Bristol
Begutachtungsstatus Peer reviewed
Institut(e) Institute for Machine Learning in Biomed Imaging (IML)
POF Topic(s) 30205 - Bioengineering and Digital Health
Forschungsfeld(er) Enabling and Novel Technologies
PSP-Element(e) G-507100-001
Förderungen Cancer ResearchUKNational Cancer Imaging Translational Accelerator Award
General Electric
National Institute for Health Research (NIHR)
UK Research & Innovation (UKRI) Engineering & Physical Sciences Research Council (EPSRC)
SKA South Africa
Scopus ID 85129666777
Erfassungsdatum 2022-06-30