Manzanera, O.E.M.* ; Ellis, S.* ; Baltatzis, V.* ; Nair, A.* ; Le Folgoc, L.* ; Desai, S.* ; Glocker, B.* ; Schnabel, J.A.*
Patient-specific 3d cellular automata nodule growth synthesis in lung cancer without the need of external data.
In: (2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), 13-16 April 2021, Nice, France). 2021. 925-928 (Proceedings - International Symposium on Biomedical Imaging ; 2021-April)
DOI
möglich sobald bei der ZB eingereicht worden ist.
We propose a novel patient-specific generative approach to simulate the emergence and growth of lung nodules using 3D cellular automata (CA) in computer tomography (CT). Our proposed method can be applied to individual images thus eliminating the need of external images that can contaminate and influence the generative process, a valuable characteristic in the medical domain. Firstly, we employ inpainting to generate pseudo-healthy representations of lung CT scans prior the visible appearance of each lung nodule. Then, for each nodule, we train a 3D CA to simulate nodule growth and progression using the image of that same nodule as a target. After each CA is trained, we generate early versions of each nodule from a single voxel until the growing nodule closely matches the appearance of the original nodule. These synthesized nodules are inserted where the original nodule was located in the pseudo-healthy inpainted versions of the CTs, which provide realistic context to the generated nodule. We utilize the simulated images for data augmentation yielding false positive reduction in a nodule detector. We found statistically significant improvements (p lt 0.001) in the detection of lung nodules.
Altmetric
Weitere Metriken?
Publikationstyp
Artikel: Konferenzbeitrag
Dokumenttyp
Typ der Hochschulschrift
Herausgeber
Korrespondenzautor
Schlagwörter
Deep Learning ; Generative Models
Keywords plus
ISSN (print) / ISBN
1945-7928
e-ISSN
1945-8452
ISBN
Bandtitel
Konferenztitel
2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)
Konferzenzdatum
13-16 April 2021
Konferenzort
Nice, France
Konferenzband
Quellenangaben
Band: 2021-April,
Heft: ,
Seiten: 925-928
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Verlagsort
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
Förderungen