PuSH - Publikationsserver des Helmholtz Zentrums München

Öksüz, I.* ; Clough, J.* ; Ruijsink, B.* ; Puyol-Antón, E.* ; Bustin, A.* ; Cruz, G.* ; Prieto, C.* ; Rueckert, D.* ; King, A.P.* ; Schnabel, J.A.*

Detection and correction of cardiac MRI motion artefacts during reconstruction from k-space.

In: (International Conference on Medical Image Computing and Computer-Assisted Intervention). Berlin [u.a.]: Springer, 2019. 695-703 (Lect. Notes Comput. Sc. ; 11767 LNCS)
DOI
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
In fully sampled cardiac MR (CMR) acquisitions, motion can lead to corruption of k-space lines, which can result in artefacts in the reconstructed images. In this paper, we propose a method to automatically detect and correct motion-related artefacts in CMR acquisitions during reconstruction from k-space data. Our correction method is inspired by work on undersampled CMR reconstruction, and uses deep learning to optimize a data-consistency term for under-sampled k-space reconstruction. Our main methodological contribution is the addition of a detection network to classify motion-corrupted k-space lines to convert the problem of artefact correction to a problem of reconstruction using the data consistency term. We train our network to automatically correct for motion-related artefacts using synthetically corrupted cine CMR k-space data as well as uncorrupted CMR images. Using a test set of 50 2D+time cine CMR datasets from the UK Biobank, we achieve good image quality in the presence of synthetic motion artefacts. We quantitatively compare our method with a variety of techniques for recovering good image quality and showcase better performance compared to state of the art denoising techniques with a PSNR of 37.1. Moreover, we show that our method preserves the quality of uncorrupted images and therefore can be also utilized as a general image reconstruction algorithm.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Konferenzbeitrag
Korrespondenzautor
Schlagwörter Cardiac Mr ; Convolutional Neural Networks ; Image Reconstruction ; Motion Artefacts ; Uk Biobank
ISSN (print) / ISBN 0302-9743
e-ISSN 1611-3349
Konferenztitel International Conference on Medical Image Computing and Computer-Assisted Intervention
Quellenangaben Band: 11767 LNCS, Heft: , Seiten: 695-703 Artikelnummer: , Supplement: ,
Verlag Springer
Verlagsort Berlin [u.a.]
Nichtpatentliteratur Publikationen
Institut(e) Institute for Machine Learning in Biomed Imaging (IML)