Öksüz, I.* ; Cruz, G.* ; Clough, J.* ; Bustin, A.* ; Fuin, N.* ; Botnar, R.M.* ; Prieto, C.* ; King, A.P.* ; Schnabel, J.A.*
Magnetic resonance fingerprinting using recurrent neural networks.
In: (2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), 08-11 April 2019, Venice, Italy). 2019. 1537-1540 (Proceedings - International Symposium on Biomedical Imaging ; 2019-April)
DOI
möglich sobald bei der ZB eingereicht worden ist.
Magnetic Resonance Fingerprinting (MRF) is a new approach to quantitative magnetic resonance imaging that allows simultaneous measurement of multiple tissue properties in a single, time-efficient acquisition. Standard MRF reconstructs parametric maps using dictionary matching and requires high computational time. We propose to perform MRF map reconstruction using a recurrent neural network, which exploits the time-dependent information of the MRF signal evolution. We evaluate our method on multiparametric synthetic signals and compare it to existing MRF map reconstruction approaches, including those based on neural networks. Our method achieves state-of-the-art estimates of T1 and T2 values. In addition, the reconstruction time is reduced compared to dictionary-matching based approach.
Altmetric
Weitere Metriken?
Publikationstyp
Artikel: Konferenzbeitrag
Dokumenttyp
Typ der Hochschulschrift
Herausgeber
Korrespondenzautor
Schlagwörter
Gru ; Lstm ; Magnetic Resonance Fingerprinting ; Parameter Mapping ; Recurrent Neural Networks
Keywords plus
ISSN (print) / ISBN
1945-7928
e-ISSN
1945-8452
ISBN
Bandtitel
Konferenztitel
2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)
Konferzenzdatum
08-11 April 2019
Konferenzort
Venice, Italy
Konferenzband
Quellenangaben
Band: 2019-April,
Heft: ,
Seiten: 1537-1540
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Verlagsort
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
Förderungen
Copyright