Meng, Q.* ; Baumgartner, C.* ; Sinclair, M.* ; Housden, J.* ; Rajchl, M.* ; Gomez, A.* ; Hou, B.* ; Toussaint, N.* ; Zimmer, V.* ; Tan, J.* ; Matthew, J.* ; Rueckert, D.* ; Schnabel, J.A.* ; Kainz, B.*
Automatic shadow detection in 2D ultrasound images.
In: (International Workshop on Preterm, Perinatal and Paediatric Image Analysis). Berlin [u.a.]: Springer, 2018. 66-75 (Lect. Notes Comput. Sc. ; 11076 LNCS)
DOI
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Automatically detecting acoustic shadows is of great importance for automatic 2D ultrasound analysis ranging from anatomy segmentation to landmark detection. However, variation in shape and similarity in intensity to other structures make shadow detection a very challenging task. In this paper, we propose an automatic shadow detection method to generate a pixel-wise, shadow-focused confidence map from weakly labelled, anatomically-focused images. Our method: (1) initializes potential shadow areas based on a classification task. (2) extends potential shadow areas using a GAN model. (3) adds intensity information to generate the final confidence map using a distance matrix. The proposed method accurately highlights the shadow areas in 2D ultrasound datasets comprising standard view planes as acquired during fetal screening. Moreover, the proposed method outperforms the state-of-the-art quantitatively and improves failure cases for automatic biometric measurement.
Altmetric
Weitere Metriken?
Publikationstyp
Artikel: Konferenzbeitrag
Dokumenttyp
Typ der Hochschulschrift
Herausgeber
Korrespondenzautor
Schlagwörter
Keywords plus
ISSN (print) / ISBN
0302-9743
e-ISSN
1611-3349
ISBN
Bandtitel
Konferenztitel
International Workshop on Preterm, Perinatal and Paediatric Image Analysis
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 11076 LNCS,
Heft: ,
Seiten: 66-75
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Springer
Verlagsort
Berlin [u.a.]
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
Förderungen
Copyright