Ultrasound (US), a standard diagnostic tool to detect fetal abnormalities, is a direction dependent imaging modality, i.e. the position of the probe highly influences the appearance of the image. View-dependent artifacts such as shadows can obstruct parts of the anatomy of interest and degrade the quality and usefulness of the image. If multiple images of the same structure are acquired from different views, view-dependent artifacts can be minimized. In this work, we propose a new US image reconstruction technique using multiple B-spline grids to enable multi-view US image compounding. The B-spline coefficients of different control point grids adapted to the geometry of the data are simultaneously optimized at every resolution level. Data points are weighted depending on their view, position and intensity. We demonstrate our method on the compounding of co-planar 2D fetal US images acquired from multiple views. Using quantitative and qualitative evaluation scores, we show that the proposed method outperforms other multi-view compounding methods.