De Luca, V.* ; Banerjee, J.* ; Hallack, A.* ; Kondo, S.* ; Makhinya, M.* ; Nouri, D.* ; Royer, L.* ; Cifor, A.* ; Dardenne, G.* ; Goksel, O.* ; Gooding, M.J.* ; Klink, C.* ; Krupa, A.* ; Le Bras, A.* ; Marchal, M.* ; Moelker, A.* ; Niessen, W.J.* ; Papiez, B.W.* ; Rothberg, A.* ; Schnabel, J.A.* ; van Walsum, T.* ; Harris, E.* ; Lediju Bell, M.A.* ; Tanner, C.*
Evaluation of 2D and 3D ultrasound tracking algorithms and impact on ultrasound-guided liver radiotherapy margins.
Med. Phys. 45, 4986-5003 (2018)
DOI
PMC
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Purpose: Compensation for respiratory motion is important during abdominal cancer treatments. In this work we report the results of the 2015 MICCAI Challenge on Liver Ultrasound Tracking and extend the 2D results to relate them to clinical relevance in form of reducing treatment margins and hence sparing healthy tissues, while maintaining full duty cycle. Methods: We describe methodologies for estimating and temporally predicting respiratory liver motion from continuous ultrasound imaging, used during ultrasound-guided radiation therapy. Furthermore, we investigated the trade-off between tracking accuracy and runtime in combination with temporal prediction strategies and their impact on treatment margins. Results: Based on 2D ultrasound sequences from 39 volunteers, a mean tracking accuracy of 0.9 mm was achieved when combining the results from the 4 challenge submissions (1.2 to 3.3 mm). The two submissions for the 3D sequences from 14 volunteers provided mean accuracies of 1.7 and 1.8 mm. In combination with temporal prediction, using the faster (41 vs 228 ms) but less accurate (1.4 vs 0.9 mm) tracking method resulted in substantially reduced treatment margins (70% vs 39%) in contrast to mid-ventilation margins, as it avoided non-linear temporal prediction by keeping the treatment system latency low (150 vs 400 ms). Acceleration of the best tracking method would improve the margin reduction to 75%. Conclusions: Liver motion estimation and prediction during free-breathing from 2D ultrasound images can substantially reduce the in-plane motion uncertainty and hence treatment margins. Employing an accurate tracking method while avoiding non-linear temporal prediction would be favorable. This approach has the potential to shorten treatment time compared to breath-hold and gated approaches, and increase treatment efficiency and safety.
Altmetric
Weitere Metriken?
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Korrespondenzautor
Schlagwörter
Image Guidance ; Motion Prediction ; Respiratory Motion ; Treatment Margins ; Ultrasound
Keywords plus
ISSN (print) / ISBN
0094-2405
e-ISSN
1522-8541
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 45,
Heft: 11,
Seiten: 4986-5003
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
American Institute of Physics (AIP)
Verlagsort
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
Förderungen
Copyright