Puyol-Antón, E.* ; Ruijsink, B.* ; Bai, W.* ; Langet, H.* ; De Craene, M.* ; Schnabel, J.A.* ; Piro, P.* ; King, A.P.* ; Sinclair, M.*
Fully automated myocardial strain estimation from cine MRI using convolutional neural networks.
In: (2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 04-07 April 2018, Washington, DC, USA). 2018. 1139-1143 (Proceedings - International Symposium on Biomedical Imaging ; 2018-April)
DOI
möglich sobald bei der ZB eingereicht worden ist.
Cardiovascular magnetic resonance myocardial feature tracking (CMR-FT) is a promising method for quantification of cardiac function from standard steady-state free precession (SSFP) images. However, currently available techniques require operator dependent and time-consuming manual intervention, limiting reproducibility and clinical use. In this paper, we propose a fully automated pipeline to compute left ventricular (LV) longitudinal and radial strain from 2- and 4-chamber cine acquisitions, and LV circumferential and radial strain from the short-axis imaging. The method employs a convolutional neural network to automatically segment the myocardium, followed by feature tracking and strain estimation. Experiments are performed using 40 healthy volunteers and 40 ischemic patients from the UK Biobank dataset. Results show that our method obtained strain values that were in excellent agreement with the commercially available clinical CMR-FT software CVI42 (Circle Cardiovascular Imaging, Calgary, Canada).
Altmetric
Weitere Metriken?
Publikationstyp
Artikel: Konferenzbeitrag
Dokumenttyp
Typ der Hochschulschrift
Herausgeber
Korrespondenzautor
Schlagwörter
Automatic Pipeline ; Machine Learning ; Mri ; Myocardial Strain
Keywords plus
ISSN (print) / ISBN
1945-7928
e-ISSN
1945-8452
ISBN
Bandtitel
Konferenztitel
2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)
Konferzenzdatum
04-07 April 2018
Konferenzort
Washington, DC, USA
Konferenzband
Quellenangaben
Band: 2018-April,
Heft: ,
Seiten: 1139-1143
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Verlagsort
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
Förderungen
Copyright