Oda, H.* ; Bhatia, K.K.* ; Oda, M.* ; Kitasaka, T.* ; Iwano, S.* ; Homma, H.* ; Takabatake, H.* ; Mori, M.* ; Natori, H.* ; Schnabel, J.A.* ; Mori, K.*
Automated mediastinal lymph node detection from CT volumes based on intensity targeted radial structure tensor analysis.
J. Med. Imaging 4:044502 (2017)
DOI
PMC
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
This paper presents a local intensity structure analysis based on an intensity targeted radial structure tensor (ITRST) and the blob-like structure enhancement filter based on it (ITRST filter) for the mediastinal lymph node detection algorithm from chest computed tomography (CT) volumes. Although the filter based on radial structure tensor analysis (RST filter) based on conventional RST analysis can be utilized to detect lymph nodes, some lymph nodes adjacent to regions with extremely high or low intensities cannot be detected. Therefore, we propose the ITRST filter, which integrates the prior knowledge on detection target intensity range into the RST filter. Our lymph node detection algorithm consists of two steps: (1) obtaining candidate regions using the ITRST filter and (2) removing false positives (FPs) using the support vector machine classifier. We evaluated lymph node detection performance of the ITRST filter on 47 contrast-enhanced chest CT volumes and compared it with the RST and Hessian filters. The detection rate of the ITRST filter was 84.2% with 9.1 FPs/volume for lymph nodes whose short axis was at least 10 mm, which outperformed the RST and Hessian filters.
Altmetric
Weitere Metriken?
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Korrespondenzautor
Schlagwörter
Computer-aided Detection ; Local Intensity Structure Analysis ; Lung Cancer ; Structure Tensor
Keywords plus
ISSN (print) / ISBN
2329-4302
e-ISSN
2329-4310
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 4,
Heft: 4,
Seiten: ,
Artikelnummer: 044502
Supplement: ,
Reihe
Verlag
SPIE
Verlagsort
Bellingham, Wash.
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
Förderungen
Copyright