PuSH - Publikationsserver des Helmholtz Zentrums München

Gomez, A.* ; Bhatia, K.* ; Tharin, S.* ; Housden, J.* ; Toussaint, N.* ; Schnabel, J.A.*

Fast registration of 3D fetal ultrasound images using learned corresponding salient points.

In: (International Workshop on Ophthalmic Medical Image Analysis). Berlin [u.a.]: Springer, 2017. 33-41 (Lect. Notes Comput. Sc. ; 10554 LNCS)
DOI
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
We propose a fast feature-based rigid registration framework with a novel feature saliency detection technique. The method works by automatically classifying candidate image points as salient or non-salient using a support vector machine trained on points which have previously driven successful registrations. Resulting candidate salient points are used for symmetric matching based on local descriptor similarity and followed by RANSAC outlier rejection to obtain the final transform. The proposed registration framework was applied to 3D real-time fetal ultrasound images, thus covering the entire fetal anatomy for extended FoV imaging. Our method was applied to data from 5 patients, and compared to a conventional saliency point detection method (SIFT) in terms of computational time, quality of the point detection and registration accuracy. Our method achieved similar accuracy and similar saliency detection quality in < 5% the detection time, showing promising capabilities towards real-time whole-body fetal ultrasound imaging.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Konferenzbeitrag
Korrespondenzautor
ISSN (print) / ISBN 0302-9743
e-ISSN 1611-3349
Konferenztitel International Workshop on Ophthalmic Medical Image Analysis
Quellenangaben Band: 10554 LNCS, Heft: , Seiten: 33-41 Artikelnummer: , Supplement: ,
Verlag Springer
Verlagsort Berlin [u.a.]
Nichtpatentliteratur Publikationen
Institut(e) Institute for Machine Learning in Biomed Imaging (IML)