Bates, R.* ; Irving, B.* ; Markelc, B.* ; Kaeppler, J.* ; Brown, G.D.* ; Muschel, R.J.* ; Brady, S.M.* ; Grau, V.* ; Schnabel, J.A.*
Segmentation of vasculature from fluorescently labeled endothelial cells in multi-photon microscopy images.
IEEE Trans. Med. Imaging 38, 1-10 (2019)
DOI
PMC
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
Vasculature is known to be of key biological significance, especially in the study of tumors. As such, considerable effort has been focused on the automated segmentation of vasculature in medical and pre-clinical images. The majority of vascular segmentation methods focus on bloodpool labeling methods; however, particularly, in the study of tumors, it is of particular interest to be able to visualize both the perfused and the non-perfused vasculature. Imaging vasculature by highlighting the endothelium provides a way to separate the morphology of vasculature from the potentially confounding factor of perfusion. Here, we present a method for the segmentation of tumor vasculature in 3D fluorescence microscopic images using signals from the endothelial and surrounding cells. We show that our method can provide complete and semantically meaningful segmentations of complex vasculature using a supervoxel-Markov random field approach. We show that in terms of extracting meaningful segmentations of the vasculature, our method outperforms both state-of-the-art method, specific to these data, as well as more classical vasculature segmentation methods.
Altmetric
Weitere Metriken?
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Korrespondenzautor
Schlagwörter
Image Segmentation ; Machine Learning ; Markov Random Fields ; Microscopy
Keywords plus
ISSN (print) / ISBN
0278-0062
e-ISSN
1558-254X
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Quellenangaben
Band: 38,
Heft: 1,
Seiten: 1-10
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Institute of Electrical and Electronics Engineers (IEEE)
Verlagsort
New York, NY [u.a.]
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Peer reviewed
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
Förderungen
Copyright