Szmul, A.* ; Papiez, B.W.* ; Bates, R.* ; Hallack, A.* ; Schnabel, J.A.* ; Grau, V.*
Graph Cuts-Based Registration Revisited: A Novel Approach for Lung Image Registration Using Supervoxels and Image-Guided Filtering.
In: (2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 26 June 2016 - 01 July 2016, Las Vegas, NV, USA). 2016. 592-599 (IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops)
DOI
möglich sobald bei der ZB eingereicht worden ist.
This work revisits the concept of graph cuts as an efficient optimization technique in image registration. Previously, due to the computational burden involved, the use of graph cuts in this context has been mainly limited to 2D applications. Here we show how combining graph cuts with supervoxels, resulting in a sparse, yet meaningful graph-based image representation, can overcome previous limitations. Additionally, we show that a relaxed graph representation of the image allows for 'sliding' motion modeling and provides anatomically plausible estimation of the deformations. This is achieved by using image-guided filtering of the estimated sparse deformation field. We evaluate our method on a publicly available CT lung data set and show that our new approach compares very favourably with state-of-the-art in continuous and discrete image registration.
Altmetric
Weitere Metriken?
Publikationstyp
Artikel: Konferenzbeitrag
Dokumenttyp
Typ der Hochschulschrift
Herausgeber
Korrespondenzautor
Schlagwörter
Discrete Optimization ; Graph Cuts ; Image Registration ; Image-guided Filtering ; Supervoxels
Keywords plus
ISSN (print) / ISBN
2160-7508
e-ISSN
2160-7516
ISBN
Bandtitel
Konferenztitel
2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
Konferzenzdatum
26 June 2016 - 01 July 2016
Konferenzort
Las Vegas, NV, USA
Konferenzband
Quellenangaben
Band: ,
Heft: ,
Seiten: 592-599
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Verlagsort
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
Förderungen
Copyright