Roque, T.* ; Papiez, B.W.* ; Kersemans, V.* ; Smart, S.* ; Allen, D.* ; Chappell, M.* ; Schnabel, J.A.*
Tumor Growth Estimation via Registration of DCE-MRI Derived Tumor Specific Descriptors.
In: (2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 26 June 2016 - 01 July 2016, Las Vegas, NV, USA). 2016. 507-515 (IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops)
DOI
möglich sobald bei der ZB eingereicht worden ist.
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) provides information on changes occurring during tumor growth in the tumor micro-environment and vasculature. In the present paper, tumor voxel-wise estimates of tumor descriptors including total cell number, proliferative cell number, hypoxic cell number, necrotic cell number and oxygen level derived from DCE-MRI data are used to guide the deformable registration of subsequent time points over the tumor growth cycle, evaluating their predictive value for tumor growth. The analysis of three preclinical colon carcinoma longitudinal cases shows that using physiologically meaningful measures of tumor as guidance information can improve non-rigid registration of longitudinal tumor imaging data when compared to a stateof-the-art local correlation coefficient Demons approach. Moreover, using the determinant of the Jacobian of the estimated displacement field as an indicator of volume change allows us to observe a correlation between the tumor descriptor values and tumor growth, especially when maps of hypoxic cells and level of oxygen were used to aid registration. To the best of our knowledge, this work demonstrates for the first time the feasibility of using biologically meaningful tumor descriptors (total cell number, proliferative cell number, hypoxic cell number, necrotic cell number and oxygen level) derived from DCE-MRI to aid non-rigid registration of longitudinal tumor data as well as to estimate tumor growth.
Altmetric
Weitere Metriken?
Publikationstyp
Artikel: Konferenzbeitrag
Dokumenttyp
Typ der Hochschulschrift
Herausgeber
Korrespondenzautor
Schlagwörter
Keywords plus
ISSN (print) / ISBN
2160-7508
e-ISSN
2160-7516
ISBN
Bandtitel
Konferenztitel
2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
Konferzenzdatum
26 June 2016 - 01 July 2016
Konferenzort
Las Vegas, NV, USA
Konferenzband
Quellenangaben
Band: ,
Heft: ,
Seiten: 507-515
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Verlagsort
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
Förderungen
Copyright