Dokumente im Korb
Helmholtz Zentrum München
|
Impressum
PuSH - Publikationsserver des Helmholtz Zentrums München
Navigation
Startseite
English
Recherche
Erweiterte Suche
Durchblättern nach ...
... Zeitschriften
... Publikationstypen
... Forschungsdaten
... Erscheinungsjahr
Publikationen im Überblick
Hilfe & Kontakt
Ansprechpartner
Hilfe
Datenschutz
Simpson, I.J.A.* ; Woolrich, M.W.* ; Cardoso, M.J.* ; Cash, D.M.* ; Modat, M.* ; Schnabel, J.A.* ; Ourselin, S.*
A Bayesian approach for spatially adaptive regularisation in non-rigid registration.
Lect. Notes Comput. Sc.
8150 LNCS
, 10-18 (2013)
DOI
Open Access Green
möglich sobald Postprint bei der ZB eingereicht worden ist.
Abstract
Metriken
Zusatzinfos
This paper introduces a novel method for inferring spatially varying regularisation in non-rigid registration. This is achieved through full Bayesian inference on a probabilistic registration model, where the prior on transformations is parametrised as a weighted mixture of spatially localised components. Such an approach has the advantage of allowing the registration to be more flexibly driven by the data than a more traditional global regularisation scheme, such as bending energy. The proposed method adaptively determines the influence of the prior in a local region. The importance of the prior may be reduced in areas where the data better supports deformations, or can enforce a stronger constraint in less informative areas. Consequently, the use of such a spatially adaptive prior may reduce the unwanted impact of regularisation on the inferred deformation field. This is especially important for applications such as tensor based morphometry, where the features of interest are directly derived from the deformation field. The proposed approach is demonstrated with application to tensor based morphometry analysis of subjects with Alzheimer's disease and healthy controls. The results show that using the proposed spatially adaptive prior leads to deformation fields that have a substantially lower average complexity, but which also provide more accurate localisation of statistical group differences. © 2013 Springer-Verlag.
Altmetric
Weitere Metriken?
[➜Einloggen]
Tags
Anmerkungen
Besondere Publikation
Zusatzinfos bearbeiten
[➜Einloggen]
Publikationstyp
Artikel: Journalartikel
Dokumenttyp
Wissenschaftlicher Artikel
Typ der Hochschulschrift
Herausgeber
Korrespondenzautor
Schlagwörter
Keywords plus
ISSN (print) / ISBN
0302-9743
e-ISSN
1611-3349
ISBN
Bandtitel
Konferenztitel
Konferzenzdatum
Konferenzort
Konferenzband
Zeitschrift
Lecture Notes in Computer Science
Quellenangaben
Band: 8150 LNCS,
Heft: PART 2,
Seiten: 10-18
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Springer
Verlagsort
Berlin [u.a.]
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Veröffentlichungsnummer
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Nichtpatentliteratur
Publikationen
Begutachtungsstatus
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
Förderungen
Copyright