Cifor, A.* ; Risser, L.* ; Chung, D.* ; Anderson, E.M.* ; Schnabel, J.A.*
Hybrid feature-based Log-Demons registration for tumour tracking in 2-D liver ultrasound images.
In: (2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), 02-05 May 2012, Barcelona, Spain). 2012. 724-727 (Proceedings - International Symposium on Biomedical Imaging)
DOI
möglich sobald bei der ZB eingereicht worden ist.
Traditional intensity-based registration methods are often insufficient for tumour tracking in time-series ultrasound, where the low signal-to-noise ratio significantly degrades the quality of the output images, and topological changes may occur as the anatomical structures slide in and out of the focus plane. To overcome these issues, we propose a hybrid feature-based Log-Demons registration method. The novelty of our approach lies in estimating a hybrid update deformation field from demons forces that carry voxel-based local information and regional spatial correspondences yielded by a block-matching scheme within the diffeomorphic Log-Demons framework. Instead of relying on intensities alone to drive the registration, we use multichannel Log-Demons, with channels representing features like intensity, local phase and phase congruency. Results on clinical data show that our method successfully registers various patient-specific cases, where the tumours are of variable visibility, and in the presence of shadows and topological changes.
Altmetric
Weitere Metriken?
Publikationstyp
Artikel: Konferenzbeitrag
Dokumenttyp
Typ der Hochschulschrift
Herausgeber
Korrespondenzautor
Schlagwörter
Block-matching ; Diffeomorphic ; Log-demons ; Tracking ; Ultrasound
Keywords plus
ISSN (print) / ISBN
1945-7928
e-ISSN
1945-8452
ISBN
Bandtitel
Konferenztitel
2012 9th IEEE International Symposium on Biomedical Imaging (ISBI)
Konferzenzdatum
02-05 May 2012
Konferenzort
Barcelona, Spain
Konferenzband
Quellenangaben
Band: ,
Heft: ,
Seiten: 724-727
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Verlagsort
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
Förderungen
Copyright