PuSH - Publikationsserver des Helmholtz Zentrums München

Cifor, A.* ; Risser, L.* ; Chung, D.* ; Anderson, E.M.* ; Schnabel, J.A.*

Hybrid feature-based Log-Demons registration for tumour tracking in 2-D liver ultrasound images.

In: (2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), 02-05 May 2012, Barcelona, Spain). 2012. 724-727 (Proceedings - International Symposium on Biomedical Imaging)
DOI
Traditional intensity-based registration methods are often insufficient for tumour tracking in time-series ultrasound, where the low signal-to-noise ratio significantly degrades the quality of the output images, and topological changes may occur as the anatomical structures slide in and out of the focus plane. To overcome these issues, we propose a hybrid feature-based Log-Demons registration method. The novelty of our approach lies in estimating a hybrid update deformation field from demons forces that carry voxel-based local information and regional spatial correspondences yielded by a block-matching scheme within the diffeomorphic Log-Demons framework. Instead of relying on intensities alone to drive the registration, we use multichannel Log-Demons, with channels representing features like intensity, local phase and phase congruency. Results on clinical data show that our method successfully registers various patient-specific cases, where the tumours are of variable visibility, and in the presence of shadows and topological changes.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Konferenzbeitrag
Korrespondenzautor
Schlagwörter Block-matching ; Diffeomorphic ; Log-demons ; Tracking ; Ultrasound
ISSN (print) / ISBN 1945-7928
e-ISSN 1945-8452
Konferenztitel 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI)
Konferzenzdatum 02-05 May 2012
Konferenzort Barcelona, Spain
Quellenangaben Band: , Heft: , Seiten: 724-727 Artikelnummer: , Supplement: ,
Nichtpatentliteratur Publikationen
Institut(e) Institute for Machine Learning in Biomed Imaging (IML)