PuSH - Publikationsserver des Helmholtz Zentrums München

Heinrich, M.P.* ; Jenkinson, M.* ; Brady, S.M.* ; Schnabel, J.A.*

Textural mutual information based on cluster trees for multimodal deformable registration.

In: (2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), 02-05 May 2012, Barcelona, Spain). 2012. 1471-1474 (Proceedings - International Symposium on Biomedical Imaging)
DOI
Mutual information (MI) has been widely used in image analysis tasks such as feature selection and image registration. In particular, it is the most widely used similarity measure for intensity based registration of multimodal images. However, a major drawback of MI is that it does not take the spatial neighbourhood into account. An effective way of incorporating spatial information could be of great benefit in a number of challenging applications. We propose the use of cluster trees to efficiently incorporate textural information from the local neighbourhood of a voxel into the computation of MI, while at the same time limiting the number of bins used to represent this higher-order information. This new similarity metric is optimised using a Markov random field (MRF). We apply our new method to the registration of dynamic lung CT volumes with simulated contrast. Experimental results show the advantages of this technique compared to standard mutual information.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Konferenzbeitrag
Korrespondenzautor
Schlagwörter Cluster Trees ; Multimodal Image Registration ; Mutual Information
ISSN (print) / ISBN 1945-7928
e-ISSN 1945-8452
Konferenztitel 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI)
Konferzenzdatum 02-05 May 2012
Konferenzort Barcelona, Spain
Quellenangaben Band: , Heft: , Seiten: 1471-1474 Artikelnummer: , Supplement: ,
Nichtpatentliteratur Publikationen
Institut(e) Institute for Machine Learning in Biomed Imaging (IML)