Chi, J.W.* ; Brady, M.* ; Moore, N.R.* ; Schnabel, J.A.*
Segmentation of the bladder wall using coupled level set methods.
In: (2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 30 March 2011 - 02 April 2011, Chicago, IL, USA). 2011. 1653-1656 (Proceedings - International Symposium on Biomedical Imaging)
DOI
möglich sobald bei der ZB eingereicht worden ist.
We describe a novel method to segment the bladder wall in magnetic resonance imaging (MRI) to support the detection of disease, such as endometriosis, and for surgical planning. We segment the inner and outer wall boundary using T2- and T1-weighted MRI images, respectively. A new coupling technique for level sets is formulated and tested on 54 T2- and T1-weighted image pairs. A local phase based dimensionless feature asymmetry measurement using the monogenic signal is used. The results are validated against manual segmentations using the Dice similarity coefficient. Our findings show that the coupling significantly improves the segmentation by preventing leakage due to weak image features and MR bias field. This method shows promising potential for other segmentation tasks involving thin, elongated structures. © 2011 IEEE.
Altmetric
Weitere Metriken?
Publikationstyp
Artikel: Konferenzbeitrag
Dokumenttyp
Typ der Hochschulschrift
Herausgeber
Korrespondenzautor
Schlagwörter
Bladder Wall ; Coupled Level Sets ; Feature Asymmetry ; Local Phase ; Monogenic Signal
Keywords plus
ISSN (print) / ISBN
1945-7928
e-ISSN
1945-8452
ISBN
Bandtitel
Konferenztitel
2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro
Konferzenzdatum
30 March 2011 - 02 April 2011
Konferenzort
Chicago, IL, USA
Konferenzband
Quellenangaben
Band: ,
Heft: ,
Seiten: 1653-1656
Artikelnummer: ,
Supplement: ,
Reihe
Verlag
Verlagsort
Hochschule
Hochschulort
Fakultät
Veröffentlichungsdatum
0000-00-00
Anmeldedatum
0000-00-00
Anmelder/Inhaber
weitere Inhaber
Anmeldeland
Priorität
Begutachtungsstatus
Institut(e)
Institute for Machine Learning in Biomed Imaging (IML)
Förderungen
Copyright