PuSH - Publikationsserver des Helmholtz Zentrums München

Babalola, K.O.* ; Patenaude, B.* ; Aljabar, P.* ; Schnabel, J.A.* ; Kennedy, D.* ; Crum, W.R.* ; Smith, S.* ; Cootes, T.F.* ; Jenkinson, M.* ; Rueckert, D.*

Comparison and evaluation of segmentation techniques for subcortical structures in brain MRI.

In: (International Conference on Medical Image Computing and Computer-Assisted Intervention). Berlin [u.a.]: Springer, 2008. 409-416 (Lect. Notes Comput. Sc. ; 5241 LNCS)
DOI
Open Access Green möglich sobald Postprint bei der ZB eingereicht worden ist.
The automation of segmentation of medical images is an active research area. However, there has been criticism of the standard of evaluation of methods. We have comprehensively evaluated four novel methods of automatically segmenting subcortical structures using volumetric, spatial overlap and distance-based measures. Two of the methods are atlas-based - classifier fusion and labelling (CFL) and expectation-maximisation segmentation using a dynamic brain atlas (EMS), and two model-based - profile active appearance models (PAM) and Bayesian appearance models (BAM). Each method was applied to the segmentation of 18 subcortical structures in 270 subjects from a diverse pool varying in age, disease, sex and image acquisition parameters. Our results showed that all four methods perform on par with recently published methods. CFL performed significantly better than the other three methods according to all three classes of metrics. © 2008 Springer-Verlag Berlin Heidelberg.
Altmetric
Weitere Metriken?
Zusatzinfos bearbeiten [➜Einloggen]
Publikationstyp Artikel: Konferenzbeitrag
Korrespondenzautor
ISSN (print) / ISBN 0302-9743
e-ISSN 1611-3349
Konferenztitel International Conference on Medical Image Computing and Computer-Assisted Intervention
Quellenangaben Band: 5241 LNCS, Heft: PART 1, Seiten: 409-416 Artikelnummer: , Supplement: ,
Verlag Springer
Verlagsort Berlin [u.a.]
Nichtpatentliteratur Publikationen
Institut(e) Institute for Machine Learning in Biomed Imaging (IML)